{"title":"考虑不同对称条件的水弹折纸单元格的非线性动力学与混沌","authors":"Guilherme V. Rodrigues, Marcelo A. Savi","doi":"10.1016/j.mechrescom.2023.104233","DOIUrl":null,"url":null,"abstract":"<div><p><span>Origami has been inspirating the development of novel engineering systems and structures. The traditional waterbomb folding pattern is one of the most widely employed pattern and its description from the unit-cell is related to multiple degrees of freedom (DoF) systems. This work investigates the nonlinear dynamics and chaos of a waterbomb origami through its unit-cell, considering different symmetry hypotheses that simplify its kinematics, resulting in 1-DoF and 2-DoF dynamical systems. The investigation starts with a </span>kinematic analysis<span><span> of the waterbomb folding pattern and afterward, a reduced-order dynamical model with lumped masses on vertices and torsional springs on creases is built. Symmetry assumptions are discussed, identifying the differences induced by either geometrical nonlinearities or external stimuli. Numerical simulations are carried out showing details of the system nonlinear dynamics, showing intricate situations such as chaos. The comparison among different symmetry conditions provides a qualitative picture of the </span>system dynamics, showing significative differences and highlighting the importance of the origami mechanical behavior comprehension, its modeling and nonlinear dynamics for a proper design of origami-inspired systems.</span></p></div>","PeriodicalId":49846,"journal":{"name":"Mechanics Research Communications","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonlinear dynamics and chaos of a waterbomb origami unit-cell considering different symmetry conditions\",\"authors\":\"Guilherme V. Rodrigues, Marcelo A. Savi\",\"doi\":\"10.1016/j.mechrescom.2023.104233\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Origami has been inspirating the development of novel engineering systems and structures. The traditional waterbomb folding pattern is one of the most widely employed pattern and its description from the unit-cell is related to multiple degrees of freedom (DoF) systems. This work investigates the nonlinear dynamics and chaos of a waterbomb origami through its unit-cell, considering different symmetry hypotheses that simplify its kinematics, resulting in 1-DoF and 2-DoF dynamical systems. The investigation starts with a </span>kinematic analysis<span><span> of the waterbomb folding pattern and afterward, a reduced-order dynamical model with lumped masses on vertices and torsional springs on creases is built. Symmetry assumptions are discussed, identifying the differences induced by either geometrical nonlinearities or external stimuli. Numerical simulations are carried out showing details of the system nonlinear dynamics, showing intricate situations such as chaos. The comparison among different symmetry conditions provides a qualitative picture of the </span>system dynamics, showing significative differences and highlighting the importance of the origami mechanical behavior comprehension, its modeling and nonlinear dynamics for a proper design of origami-inspired systems.</span></p></div>\",\"PeriodicalId\":49846,\"journal\":{\"name\":\"Mechanics Research Communications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanics Research Communications\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0093641323001921\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics Research Communications","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0093641323001921","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
Nonlinear dynamics and chaos of a waterbomb origami unit-cell considering different symmetry conditions
Origami has been inspirating the development of novel engineering systems and structures. The traditional waterbomb folding pattern is one of the most widely employed pattern and its description from the unit-cell is related to multiple degrees of freedom (DoF) systems. This work investigates the nonlinear dynamics and chaos of a waterbomb origami through its unit-cell, considering different symmetry hypotheses that simplify its kinematics, resulting in 1-DoF and 2-DoF dynamical systems. The investigation starts with a kinematic analysis of the waterbomb folding pattern and afterward, a reduced-order dynamical model with lumped masses on vertices and torsional springs on creases is built. Symmetry assumptions are discussed, identifying the differences induced by either geometrical nonlinearities or external stimuli. Numerical simulations are carried out showing details of the system nonlinear dynamics, showing intricate situations such as chaos. The comparison among different symmetry conditions provides a qualitative picture of the system dynamics, showing significative differences and highlighting the importance of the origami mechanical behavior comprehension, its modeling and nonlinear dynamics for a proper design of origami-inspired systems.
期刊介绍:
Mechanics Research Communications publishes, as rapidly as possible, peer-reviewed manuscripts of high standards but restricted length. It aims to provide:
• a fast means of communication
• an exchange of ideas among workers in mechanics
• an effective method of bringing new results quickly to the public
• an informal vehicle for the discussion
• of ideas that may still be in the formative stages
The field of Mechanics will be understood to encompass the behavior of continua, fluids, solids, particles and their mixtures. Submissions must contain a strong, novel contribution to the field of mechanics, and ideally should be focused on current issues in the field involving theoretical, experimental and/or applied research, preferably within the broad expertise encompassed by the Board of Associate Editors. Deviations from these areas should be discussed in advance with the Editor-in-Chief.