{"title":"变压器油纸绝缘中的湿气传输模型:理论与实验","authors":"Junjie Zhou, Zhicheng Wu, Yiran Guo, Rui Zhang, Wenbing Zhu, Qiaogen Zhang","doi":"10.1049/hve2.12414","DOIUrl":null,"url":null,"abstract":"<p>The insulation performance of oil paper insulation is significantly affected by moisture such that monitoring moisture content is important. However, it is difficult to obtain the moisture content accurately due to its dynamic change under multi physical fields. Studying the moisture transportation in oil paper insulation under multi physical fields becomes a vital method in solving the problem. A multi physical model describing moisture migration was proposed, which considered the effects of temperature on moisture in different existing states in oil-immersed paper (OIP). The temperature distribution formed a vapour pressure gradient to drive moisture migration and affected migration speed. Then, experiments and simulations of moisture migration were performed, which showed that the experiments were in good agreement with simulation. The results revealed that the temperature gradient caused uneven moisture distribution and the increased temperature reduced OIP moisture content. The established model could fully characterise moisture migration under temperature gradient, which provided a theoretical reference for predicting the risk of partial dampness and evaluating insulation performance.</p>","PeriodicalId":48649,"journal":{"name":"High Voltage","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/hve2.12414","citationCount":"0","resultStr":"{\"title\":\"Model moisture transport in oil-paper insulation of transformer: Theory and experiment\",\"authors\":\"Junjie Zhou, Zhicheng Wu, Yiran Guo, Rui Zhang, Wenbing Zhu, Qiaogen Zhang\",\"doi\":\"10.1049/hve2.12414\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The insulation performance of oil paper insulation is significantly affected by moisture such that monitoring moisture content is important. However, it is difficult to obtain the moisture content accurately due to its dynamic change under multi physical fields. Studying the moisture transportation in oil paper insulation under multi physical fields becomes a vital method in solving the problem. A multi physical model describing moisture migration was proposed, which considered the effects of temperature on moisture in different existing states in oil-immersed paper (OIP). The temperature distribution formed a vapour pressure gradient to drive moisture migration and affected migration speed. Then, experiments and simulations of moisture migration were performed, which showed that the experiments were in good agreement with simulation. The results revealed that the temperature gradient caused uneven moisture distribution and the increased temperature reduced OIP moisture content. The established model could fully characterise moisture migration under temperature gradient, which provided a theoretical reference for predicting the risk of partial dampness and evaluating insulation performance.</p>\",\"PeriodicalId\":48649,\"journal\":{\"name\":\"High Voltage\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/hve2.12414\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"High Voltage\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/hve2.12414\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Voltage","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/hve2.12414","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Model moisture transport in oil-paper insulation of transformer: Theory and experiment
The insulation performance of oil paper insulation is significantly affected by moisture such that monitoring moisture content is important. However, it is difficult to obtain the moisture content accurately due to its dynamic change under multi physical fields. Studying the moisture transportation in oil paper insulation under multi physical fields becomes a vital method in solving the problem. A multi physical model describing moisture migration was proposed, which considered the effects of temperature on moisture in different existing states in oil-immersed paper (OIP). The temperature distribution formed a vapour pressure gradient to drive moisture migration and affected migration speed. Then, experiments and simulations of moisture migration were performed, which showed that the experiments were in good agreement with simulation. The results revealed that the temperature gradient caused uneven moisture distribution and the increased temperature reduced OIP moisture content. The established model could fully characterise moisture migration under temperature gradient, which provided a theoretical reference for predicting the risk of partial dampness and evaluating insulation performance.
High VoltageEnergy-Energy Engineering and Power Technology
CiteScore
9.60
自引率
27.30%
发文量
97
审稿时长
21 weeks
期刊介绍:
High Voltage aims to attract original research papers and review articles. The scope covers high-voltage power engineering and high voltage applications, including experimental, computational (including simulation and modelling) and theoretical studies, which include:
Electrical Insulation
● Outdoor, indoor, solid, liquid and gas insulation
● Transient voltages and overvoltage protection
● Nano-dielectrics and new insulation materials
● Condition monitoring and maintenance
Discharge and plasmas, pulsed power
● Electrical discharge, plasma generation and applications
● Interactions of plasma with surfaces
● Pulsed power science and technology
High-field effects
● Computation, measurements of Intensive Electromagnetic Field
● Electromagnetic compatibility
● Biomedical effects
● Environmental effects and protection
High Voltage Engineering
● Design problems, testing and measuring techniques
● Equipment development and asset management
● Smart Grid, live line working
● AC/DC power electronics
● UHV power transmission
Special Issues. Call for papers:
Interface Charging Phenomena for Dielectric Materials - https://digital-library.theiet.org/files/HVE_CFP_ICP.pdf
Emerging Materials For High Voltage Applications - https://digital-library.theiet.org/files/HVE_CFP_EMHVA.pdf