Chuan-Wei Kuo, Bo-Yu Chen, Wen-Chih Peng, Chih-Chieh Hung, Hsin-Ning Su
{"title":"利用隐式和显式邻居进行关联感知图数据扩充","authors":"Chuan-Wei Kuo, Bo-Yu Chen, Wen-Chih Peng, Chih-Chieh Hung, Hsin-Ning Su","doi":"10.1145/3638057","DOIUrl":null,"url":null,"abstract":"<p>In recent years, there has been a significant surge in commercial demand for citation graph-based tasks, such as patent analysis, social network analysis, and recommendation systems. Graph Neural Networks (GNNs) are widely used for these tasks due to their remarkable performance in capturing topological graph information. However, GNNs’ output results are highly dependent on the composition of local neighbors within the topological structure. To address this issue, we identify two types of neighbors in a citation graph: explicit neighbors based on the topological structure, and implicit neighbors based on node features. Our primary motivation is to clearly define and visualize these neighbors, emphasizing their importance in enhancing graph neural network performance. We propose a Correlation-aware Network (CNet) to re-organize the citation graph and learn more valuable informative representations by leveraging these implicit and explicit neighbors. Our approach aims to improve graph data augmentation and classification performance, with the majority of our focus on stating the importance of using these neighbors, while also introducing a new graph data augmentation method. We compare CNet with state-of-the-art (SOTA) GNNs and other graph data augmentation approaches acting on GNNs. Extensive experiments demonstrate that CNet effectively extracts more valuable informative representations from the citation graph, significantly outperforming baselines. The code is available on public GitHub\n<sup>1</sup>.</p>","PeriodicalId":49249,"journal":{"name":"ACM Transactions on Knowledge Discovery from Data","volume":"27 1","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Correlation-Aware Graph Data Augmentation with Implicit and Explicit Neighbors\",\"authors\":\"Chuan-Wei Kuo, Bo-Yu Chen, Wen-Chih Peng, Chih-Chieh Hung, Hsin-Ning Su\",\"doi\":\"10.1145/3638057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In recent years, there has been a significant surge in commercial demand for citation graph-based tasks, such as patent analysis, social network analysis, and recommendation systems. Graph Neural Networks (GNNs) are widely used for these tasks due to their remarkable performance in capturing topological graph information. However, GNNs’ output results are highly dependent on the composition of local neighbors within the topological structure. To address this issue, we identify two types of neighbors in a citation graph: explicit neighbors based on the topological structure, and implicit neighbors based on node features. Our primary motivation is to clearly define and visualize these neighbors, emphasizing their importance in enhancing graph neural network performance. We propose a Correlation-aware Network (CNet) to re-organize the citation graph and learn more valuable informative representations by leveraging these implicit and explicit neighbors. Our approach aims to improve graph data augmentation and classification performance, with the majority of our focus on stating the importance of using these neighbors, while also introducing a new graph data augmentation method. We compare CNet with state-of-the-art (SOTA) GNNs and other graph data augmentation approaches acting on GNNs. Extensive experiments demonstrate that CNet effectively extracts more valuable informative representations from the citation graph, significantly outperforming baselines. The code is available on public GitHub\\n<sup>1</sup>.</p>\",\"PeriodicalId\":49249,\"journal\":{\"name\":\"ACM Transactions on Knowledge Discovery from Data\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Knowledge Discovery from Data\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3638057\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Knowledge Discovery from Data","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3638057","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Correlation-Aware Graph Data Augmentation with Implicit and Explicit Neighbors
In recent years, there has been a significant surge in commercial demand for citation graph-based tasks, such as patent analysis, social network analysis, and recommendation systems. Graph Neural Networks (GNNs) are widely used for these tasks due to their remarkable performance in capturing topological graph information. However, GNNs’ output results are highly dependent on the composition of local neighbors within the topological structure. To address this issue, we identify two types of neighbors in a citation graph: explicit neighbors based on the topological structure, and implicit neighbors based on node features. Our primary motivation is to clearly define and visualize these neighbors, emphasizing their importance in enhancing graph neural network performance. We propose a Correlation-aware Network (CNet) to re-organize the citation graph and learn more valuable informative representations by leveraging these implicit and explicit neighbors. Our approach aims to improve graph data augmentation and classification performance, with the majority of our focus on stating the importance of using these neighbors, while also introducing a new graph data augmentation method. We compare CNet with state-of-the-art (SOTA) GNNs and other graph data augmentation approaches acting on GNNs. Extensive experiments demonstrate that CNet effectively extracts more valuable informative representations from the citation graph, significantly outperforming baselines. The code is available on public GitHub
1.
期刊介绍:
TKDD welcomes papers on a full range of research in the knowledge discovery and analysis of diverse forms of data. Such subjects include, but are not limited to: scalable and effective algorithms for data mining and big data analysis, mining brain networks, mining data streams, mining multi-media data, mining high-dimensional data, mining text, Web, and semi-structured data, mining spatial and temporal data, data mining for community generation, social network analysis, and graph structured data, security and privacy issues in data mining, visual, interactive and online data mining, pre-processing and post-processing for data mining, robust and scalable statistical methods, data mining languages, foundations of data mining, KDD framework and process, and novel applications and infrastructures exploiting data mining technology including massively parallel processing and cloud computing platforms. TKDD encourages papers that explore the above subjects in the context of large distributed networks of computers, parallel or multiprocessing computers, or new data devices. TKDD also encourages papers that describe emerging data mining applications that cannot be satisfied by the current data mining technology.