{"title":"利用随机降序模型优化随机交通荷载下的桥梁拓扑结构","authors":"Kaiming Luo , Xuhui He , Haiquan Jing","doi":"10.1016/j.probengmech.2024.103583","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents a framework for robust topology optimization of bridges under random traffic loading. Traffic loading is simulated using a stream of random moving loads parameterized by their masses, speeds, directions, and arrival times. The stochastic reduced-order model approach is combined with the equivalent static load method to achieve uncertainty-informed dynamic response topology optimization. The stochastic reduced-order model approach propagates uncertainty and reduces problem dimension, whereas the equivalent static load method is employed for dynamic response topology optimization. The effectiveness of the proposed optimization framework is demonstrated using several numerical examples. The proposed framework is found to be effective in optimizing structures under traffic loading, making it a promising solution for the topological design of bridges.</p></div>","PeriodicalId":54583,"journal":{"name":"Probabilistic Engineering Mechanics","volume":"75 ","pages":"Article 103583"},"PeriodicalIF":3.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Topology optimization of bridges under random traffic loading using stochastic reduced-order models\",\"authors\":\"Kaiming Luo , Xuhui He , Haiquan Jing\",\"doi\":\"10.1016/j.probengmech.2024.103583\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper presents a framework for robust topology optimization of bridges under random traffic loading. Traffic loading is simulated using a stream of random moving loads parameterized by their masses, speeds, directions, and arrival times. The stochastic reduced-order model approach is combined with the equivalent static load method to achieve uncertainty-informed dynamic response topology optimization. The stochastic reduced-order model approach propagates uncertainty and reduces problem dimension, whereas the equivalent static load method is employed for dynamic response topology optimization. The effectiveness of the proposed optimization framework is demonstrated using several numerical examples. The proposed framework is found to be effective in optimizing structures under traffic loading, making it a promising solution for the topological design of bridges.</p></div>\",\"PeriodicalId\":54583,\"journal\":{\"name\":\"Probabilistic Engineering Mechanics\",\"volume\":\"75 \",\"pages\":\"Article 103583\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Probabilistic Engineering Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0266892024000055\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probabilistic Engineering Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266892024000055","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Topology optimization of bridges under random traffic loading using stochastic reduced-order models
This paper presents a framework for robust topology optimization of bridges under random traffic loading. Traffic loading is simulated using a stream of random moving loads parameterized by their masses, speeds, directions, and arrival times. The stochastic reduced-order model approach is combined with the equivalent static load method to achieve uncertainty-informed dynamic response topology optimization. The stochastic reduced-order model approach propagates uncertainty and reduces problem dimension, whereas the equivalent static load method is employed for dynamic response topology optimization. The effectiveness of the proposed optimization framework is demonstrated using several numerical examples. The proposed framework is found to be effective in optimizing structures under traffic loading, making it a promising solution for the topological design of bridges.
期刊介绍:
This journal provides a forum for scholarly work dealing primarily with probabilistic and statistical approaches to contemporary solid/structural and fluid mechanics problems encountered in diverse technical disciplines such as aerospace, civil, marine, mechanical, and nuclear engineering. The journal aims to maintain a healthy balance between general solution techniques and problem-specific results, encouraging a fruitful exchange of ideas among disparate engineering specialities.