{"title":"喜马拉雅山西北部超高压措莫拉里复合体的起源:对古生代早期断裂的影响","authors":"Takeshi Imayama, Dripta Dutta, Keewook Yi","doi":"10.1017/s0016756824000025","DOIUrl":null,"url":null,"abstract":"<p>The origins and age distribution of the Himalayan high-pressure (HP) and ultrahigh-pressure (UHP) metamorphic rocks are critical for understanding the pre-Himalayan history. Although the protoliths to the UHP Tso Morari eclogites in Ladakh, NW Himalaya are believed to be the Permian Panjal volcanics, the geochronological evidence is absent. Here, we demonstrate that the protoliths of the UHP Tso Morari Complex formed in a continental rift setting at the Indian margin associated with the northern East Gondwana during the Early Paleozoic. Zircon U–Pb dates from eight gneisses and one garnet amphibolite indicate the Early Paleozoic bimodal magmatism of 493–476 Ma, which could be associated with the separation of South China from North India. Except for arc-related eclogites found in the Nidar ophiolite, the eclogites and amphibolites are rift-related, exhibiting enriched light rare earth elements and high concentrations of incompatible elements, along with evidence for crustal contamination. Our findings support the previously reported diversity in the sources and ages of the protoliths of the Himalayan HP–UHP metamorphic rocks along the orogen.</p>","PeriodicalId":12612,"journal":{"name":"Geological Magazine","volume":"3 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The origin of the ultrahigh-pressure Tso Morari complex, NW Himalaya: implication for early Paleozoic rifting\",\"authors\":\"Takeshi Imayama, Dripta Dutta, Keewook Yi\",\"doi\":\"10.1017/s0016756824000025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The origins and age distribution of the Himalayan high-pressure (HP) and ultrahigh-pressure (UHP) metamorphic rocks are critical for understanding the pre-Himalayan history. Although the protoliths to the UHP Tso Morari eclogites in Ladakh, NW Himalaya are believed to be the Permian Panjal volcanics, the geochronological evidence is absent. Here, we demonstrate that the protoliths of the UHP Tso Morari Complex formed in a continental rift setting at the Indian margin associated with the northern East Gondwana during the Early Paleozoic. Zircon U–Pb dates from eight gneisses and one garnet amphibolite indicate the Early Paleozoic bimodal magmatism of 493–476 Ma, which could be associated with the separation of South China from North India. Except for arc-related eclogites found in the Nidar ophiolite, the eclogites and amphibolites are rift-related, exhibiting enriched light rare earth elements and high concentrations of incompatible elements, along with evidence for crustal contamination. Our findings support the previously reported diversity in the sources and ages of the protoliths of the Himalayan HP–UHP metamorphic rocks along the orogen.</p>\",\"PeriodicalId\":12612,\"journal\":{\"name\":\"Geological Magazine\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geological Magazine\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1017/s0016756824000025\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geological Magazine","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1017/s0016756824000025","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
The origin of the ultrahigh-pressure Tso Morari complex, NW Himalaya: implication for early Paleozoic rifting
The origins and age distribution of the Himalayan high-pressure (HP) and ultrahigh-pressure (UHP) metamorphic rocks are critical for understanding the pre-Himalayan history. Although the protoliths to the UHP Tso Morari eclogites in Ladakh, NW Himalaya are believed to be the Permian Panjal volcanics, the geochronological evidence is absent. Here, we demonstrate that the protoliths of the UHP Tso Morari Complex formed in a continental rift setting at the Indian margin associated with the northern East Gondwana during the Early Paleozoic. Zircon U–Pb dates from eight gneisses and one garnet amphibolite indicate the Early Paleozoic bimodal magmatism of 493–476 Ma, which could be associated with the separation of South China from North India. Except for arc-related eclogites found in the Nidar ophiolite, the eclogites and amphibolites are rift-related, exhibiting enriched light rare earth elements and high concentrations of incompatible elements, along with evidence for crustal contamination. Our findings support the previously reported diversity in the sources and ages of the protoliths of the Himalayan HP–UHP metamorphic rocks along the orogen.
期刊介绍:
Geological Magazine, established in 1864, is one of the oldest and best-known periodicals in earth sciences. It publishes original scientific papers covering the complete spectrum of geological topics, with high quality illustrations. Its worldwide circulation and high production values, combined with Rapid Communications and Book Review sections keep the journal at the forefront of the field.
This journal is included in the Cambridge Journals open access initiative, Cambridge Open Option.