通过基于深度学习的端到端两阶段工作流程对水库周围的人造物体进行分割

IF 1.4 4区 地球科学 Q4 ENVIRONMENTAL SCIENCES Journal of Applied Remote Sensing Pub Date : 2024-01-01 DOI:10.1117/1.jrs.18.018502
Nayereh Hamidishad, Roberto Marcondes Cesar Jr.
{"title":"通过基于深度学习的端到端两阶段工作流程对水库周围的人造物体进行分割","authors":"Nayereh Hamidishad, Roberto Marcondes Cesar Jr.","doi":"10.1117/1.jrs.18.018502","DOIUrl":null,"url":null,"abstract":"Reservoirs are fundamental infrastructures for the management of water resources. Constructions around them can negatively impact their water quality. Such constructions can be detected by segmenting man-made objects around reservoirs in the remote sensing (RS) images. Deep learning (DL) has attracted considerable attention in recent years as a method for segmenting the RS imagery into different land covers/uses and has achieved remarkable success. We develop an approach based on DL and image processing techniques for man-made object segmentation around the reservoirs. In order to segment man-made objects around the reservoirs in an end-to-end procedure, segmenting reservoirs and identifying the region of interest (RoI) around them are essential. In the proposed two-phase workflow, the reservoir is initially segmented using a DL model, and a postprocessing stage is proposed to remove errors, such as floating vegetation in the generated reservoir map. In the second phase, the RoI around the reservoir (RoIaR) is extracted using the proposed image processing techniques. Finally, the man-made objects in the RoIaR are segmented using a DL model. To illustrate the proposed approach, our task of interest is segmenting man-made objects around some of the most important reservoirs in Brazil. Therefore, we trained the proposed workflow using collected Google Earth images of eight reservoirs in Brazil over two different years. The U-Net-based and SegNet-based architectures are trained to segment the reservoirs. To segment man-made objects in the RoIaR, we trained and evaluated four architectures: U-Net, feature pyramid network, LinkNet, and pyramid scene parsing network. Although the collected data are highly diverse (for example, they belong to different states, seasons, resolutions, etc.), we achieved good performances in both phases. The F1-score of phase-1 and phase-2 highest performance models in segmenting test sets are 96.53% and 90.32%, respectively. Furthermore, applying the proposed postprocessing to the output of reservoir segmentation improves the precision in all studied reservoirs except two cases. We validated the prepared workflow with a reservoir dataset outside the training reservoirs. The F1-scores of the phase-1 segmentation stage, postprocessing stage, and phase-2 segmentation stage are 92.54%, 94.68%, and 88.11%, respectively, which show high generalization ability of the prepared workflow.","PeriodicalId":54879,"journal":{"name":"Journal of Applied Remote Sensing","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Man-made object segmentation around reservoirs by an end-to-end two-phase deep learning-based workflow\",\"authors\":\"Nayereh Hamidishad, Roberto Marcondes Cesar Jr.\",\"doi\":\"10.1117/1.jrs.18.018502\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reservoirs are fundamental infrastructures for the management of water resources. Constructions around them can negatively impact their water quality. Such constructions can be detected by segmenting man-made objects around reservoirs in the remote sensing (RS) images. Deep learning (DL) has attracted considerable attention in recent years as a method for segmenting the RS imagery into different land covers/uses and has achieved remarkable success. We develop an approach based on DL and image processing techniques for man-made object segmentation around the reservoirs. In order to segment man-made objects around the reservoirs in an end-to-end procedure, segmenting reservoirs and identifying the region of interest (RoI) around them are essential. In the proposed two-phase workflow, the reservoir is initially segmented using a DL model, and a postprocessing stage is proposed to remove errors, such as floating vegetation in the generated reservoir map. In the second phase, the RoI around the reservoir (RoIaR) is extracted using the proposed image processing techniques. Finally, the man-made objects in the RoIaR are segmented using a DL model. To illustrate the proposed approach, our task of interest is segmenting man-made objects around some of the most important reservoirs in Brazil. Therefore, we trained the proposed workflow using collected Google Earth images of eight reservoirs in Brazil over two different years. The U-Net-based and SegNet-based architectures are trained to segment the reservoirs. To segment man-made objects in the RoIaR, we trained and evaluated four architectures: U-Net, feature pyramid network, LinkNet, and pyramid scene parsing network. Although the collected data are highly diverse (for example, they belong to different states, seasons, resolutions, etc.), we achieved good performances in both phases. The F1-score of phase-1 and phase-2 highest performance models in segmenting test sets are 96.53% and 90.32%, respectively. Furthermore, applying the proposed postprocessing to the output of reservoir segmentation improves the precision in all studied reservoirs except two cases. We validated the prepared workflow with a reservoir dataset outside the training reservoirs. The F1-scores of the phase-1 segmentation stage, postprocessing stage, and phase-2 segmentation stage are 92.54%, 94.68%, and 88.11%, respectively, which show high generalization ability of the prepared workflow.\",\"PeriodicalId\":54879,\"journal\":{\"name\":\"Journal of Applied Remote Sensing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Remote Sensing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1117/1.jrs.18.018502\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1117/1.jrs.18.018502","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

水库是水资源管理的基本基础设施。水库周围的建筑会对水质产生负面影响。可以通过分割遥感(RS)图像中水库周围的人造物体来检测此类建筑。近年来,深度学习(DL)作为一种将遥感图像分割为不同土地覆盖/用途的方法引起了广泛关注,并取得了显著成效。我们开发了一种基于深度学习和图像处理技术的方法,用于水库周围人造物体的分割。为了以端到端的方式分割水库周围的人造物体,必须分割水库并确定其周围的感兴趣区域(RoI)。在建议的两阶段工作流程中,首先使用 DL 模型对水库进行分割,然后建议进行后处理,以消除生成的水库地图中的浮动植被等错误。在第二阶段,利用所提出的图像处理技术提取水库周围的 RoI(RoIaR)。最后,使用 DL 模型对 RoIaR 中的人造物体进行分割。为了说明所提出的方法,我们感兴趣的任务是分割巴西一些最重要水库周围的人造物体。因此,我们使用收集到的两年内巴西八个水库的谷歌地球图像对所提出的工作流程进行了训练。基于 U-Net 和 SegNet 的架构经过训练后可对水库进行分割。为了分割 RoIaR 中的人造物体,我们训练并评估了四种架构:U-Net、特征金字塔网络、LinkNet 和金字塔场景解析网络。虽然收集到的数据非常多样化(例如,它们属于不同的状态、季节、分辨率等),但我们在两个阶段都取得了良好的成绩。第一阶段和第二阶段最高性能模型在分割测试集时的 F1 分数分别为 96.53% 和 90.32%。此外,对油藏分割的输出结果进行建议的后处理后,除两种情况外,还提高了所有研究油藏的精度。我们用训练油藏之外的油藏数据集验证了所准备的工作流程。第一阶段分割阶段、后处理阶段和第二阶段分割阶段的 F1 分数分别为 92.54%、94.68% 和 88.11%,这表明所编制的工作流程具有很高的泛化能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Man-made object segmentation around reservoirs by an end-to-end two-phase deep learning-based workflow
Reservoirs are fundamental infrastructures for the management of water resources. Constructions around them can negatively impact their water quality. Such constructions can be detected by segmenting man-made objects around reservoirs in the remote sensing (RS) images. Deep learning (DL) has attracted considerable attention in recent years as a method for segmenting the RS imagery into different land covers/uses and has achieved remarkable success. We develop an approach based on DL and image processing techniques for man-made object segmentation around the reservoirs. In order to segment man-made objects around the reservoirs in an end-to-end procedure, segmenting reservoirs and identifying the region of interest (RoI) around them are essential. In the proposed two-phase workflow, the reservoir is initially segmented using a DL model, and a postprocessing stage is proposed to remove errors, such as floating vegetation in the generated reservoir map. In the second phase, the RoI around the reservoir (RoIaR) is extracted using the proposed image processing techniques. Finally, the man-made objects in the RoIaR are segmented using a DL model. To illustrate the proposed approach, our task of interest is segmenting man-made objects around some of the most important reservoirs in Brazil. Therefore, we trained the proposed workflow using collected Google Earth images of eight reservoirs in Brazil over two different years. The U-Net-based and SegNet-based architectures are trained to segment the reservoirs. To segment man-made objects in the RoIaR, we trained and evaluated four architectures: U-Net, feature pyramid network, LinkNet, and pyramid scene parsing network. Although the collected data are highly diverse (for example, they belong to different states, seasons, resolutions, etc.), we achieved good performances in both phases. The F1-score of phase-1 and phase-2 highest performance models in segmenting test sets are 96.53% and 90.32%, respectively. Furthermore, applying the proposed postprocessing to the output of reservoir segmentation improves the precision in all studied reservoirs except two cases. We validated the prepared workflow with a reservoir dataset outside the training reservoirs. The F1-scores of the phase-1 segmentation stage, postprocessing stage, and phase-2 segmentation stage are 92.54%, 94.68%, and 88.11%, respectively, which show high generalization ability of the prepared workflow.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Remote Sensing
Journal of Applied Remote Sensing 环境科学-成像科学与照相技术
CiteScore
3.40
自引率
11.80%
发文量
194
审稿时长
3 months
期刊介绍: The Journal of Applied Remote Sensing is a peer-reviewed journal that optimizes the communication of concepts, information, and progress among the remote sensing community.
期刊最新文献
Few-shot synthetic aperture radar object detection algorithm based on meta-learning and variational inference Object-based strategy for generating high-resolution four-dimensional thermal surface models of buildings based on integration of visible and thermal unmanned aerial vehicle imagery Frequent oversights in on-orbit modulation transfer function estimation of optical imager onboard EO satellites Comprehensive comparison of different gridded precipitation products over geographic regions of Türkiye Monitoring soil moisture in cotton fields with synthetic aperture radar and optical data in arid and semi-arid regions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1