从稀疏数据中识别高可信度非线性动力学

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-01-24 DOI:10.1137/23m1560252
Bogdan Batko, Marcio Gameiro, Ying Hung, William Kalies, Konstantin Mischaikow, Ewerton Vieira
{"title":"从稀疏数据中识别高可信度非线性动力学","authors":"Bogdan Batko, Marcio Gameiro, Ying Hung, William Kalies, Konstantin Mischaikow, Ewerton Vieira","doi":"10.1137/23m1560252","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Applied Dynamical Systems, Volume 23, Issue 1, Page 383-409, March 2024. <br/> Abstract.We introduce a novel procedure that, given sparse data generated from a stationary deterministic nonlinear dynamical system, can characterize specific local and/or global dynamic behavior with rigorous probability guarantees. More precisely, the sparse data is used to construct a statistical surrogate model based on a Gaussian process (GP). The dynamics of the surrogate model is interrogated using combinatorial methods and characterized using algebraic topological invariants (Conley index). The GP predictive distribution provides a lower bound on the confidence that these topological invariants, and hence the characterized dynamics, apply to the unknown dynamical system (assumed to be a sample path of the GP). The focus of this paper is on explaining the ideas, thus we restrict our examples to one-dimensional systems and show how to capture the existence of fixed points, periodic orbits, connecting orbits, bistability, and chaotic dynamics.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identifying Nonlinear Dynamics with High Confidence from Sparse Data\",\"authors\":\"Bogdan Batko, Marcio Gameiro, Ying Hung, William Kalies, Konstantin Mischaikow, Ewerton Vieira\",\"doi\":\"10.1137/23m1560252\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Applied Dynamical Systems, Volume 23, Issue 1, Page 383-409, March 2024. <br/> Abstract.We introduce a novel procedure that, given sparse data generated from a stationary deterministic nonlinear dynamical system, can characterize specific local and/or global dynamic behavior with rigorous probability guarantees. More precisely, the sparse data is used to construct a statistical surrogate model based on a Gaussian process (GP). The dynamics of the surrogate model is interrogated using combinatorial methods and characterized using algebraic topological invariants (Conley index). The GP predictive distribution provides a lower bound on the confidence that these topological invariants, and hence the characterized dynamics, apply to the unknown dynamical system (assumed to be a sample path of the GP). The focus of this paper is on explaining the ideas, thus we restrict our examples to one-dimensional systems and show how to capture the existence of fixed points, periodic orbits, connecting orbits, bistability, and chaotic dynamics.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/23m1560252\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1560252","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

SIAM 应用动力系统期刊》第 23 卷第 1 期第 383-409 页,2024 年 3 月。 摘要.我们介绍了一种新的程序,给定由静态确定性非线性动力学系统生成的稀疏数据,该程序能以严格的概率保证表征特定的局部和/或全局动力学行为。更准确地说,稀疏数据用于构建基于高斯过程(GP)的统计代用模型。使用组合方法对代理模型的动态进行分析,并使用代数拓扑不变式(康利指数)对其进行表征。GP 预测分布提供了这些拓扑不变式的置信度下限,因此表征的动力学适用于未知动力系统(假设为 GP 的样本路径)。本文的重点在于解释这些思想,因此我们将例子限制在一维系统,并展示如何捕捉定点、周期轨道、连接轨道、双稳态和混沌动力学的存在。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Identifying Nonlinear Dynamics with High Confidence from Sparse Data
SIAM Journal on Applied Dynamical Systems, Volume 23, Issue 1, Page 383-409, March 2024.
Abstract.We introduce a novel procedure that, given sparse data generated from a stationary deterministic nonlinear dynamical system, can characterize specific local and/or global dynamic behavior with rigorous probability guarantees. More precisely, the sparse data is used to construct a statistical surrogate model based on a Gaussian process (GP). The dynamics of the surrogate model is interrogated using combinatorial methods and characterized using algebraic topological invariants (Conley index). The GP predictive distribution provides a lower bound on the confidence that these topological invariants, and hence the characterized dynamics, apply to the unknown dynamical system (assumed to be a sample path of the GP). The focus of this paper is on explaining the ideas, thus we restrict our examples to one-dimensional systems and show how to capture the existence of fixed points, periodic orbits, connecting orbits, bistability, and chaotic dynamics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1