使用超临界翼面的直升机旋翼盘旋性能分析

IF 1.2 4区 工程技术 Q3 ENGINEERING, AEROSPACE Aircraft Engineering and Aerospace Technology Pub Date : 2024-01-25 DOI:10.1108/aeat-09-2023-0244
Inamul Hasan, Mukesh R., Radha Krishnan P., Srinath R., Boomadevi P.
{"title":"使用超临界翼面的直升机旋翼盘旋性能分析","authors":"Inamul Hasan, Mukesh R., Radha Krishnan P., Srinath R., Boomadevi P.","doi":"10.1108/aeat-09-2023-0244","DOIUrl":null,"url":null,"abstract":"<h3>Purpose</h3>\n<p>This study aims to find the characteristics of supercritical airfoil in helicopter rotor blades for hovering phase using numerical analysis and the validation using experimental results.</p><!--/ Abstract__block -->\n<h3>Design/methodology/approach</h3>\n<p>Using numerical analysis in the forward phase of the helicopter, supercritical airfoil is compared with the conventional airfoil for the aerodynamic performance. The multiple reference frame method is used to produce the results for rotational analysis. A grid independence test was carried out, and validation was obtained using benchmark values from NASA data.</p><!--/ Abstract__block -->\n<h3>Findings</h3>\n<p>From the analysis results, a supercritical airfoil in hovering flight analysis proved that the NASA SC rotor produces 25% at 5°, 26% at 12° and 32% better thrust at 8° of collective pitch than the HH02 rotor. Helicopter performance parameters are also calculated based on momentum theory. Theoretical calculations prove that the NASA SC rotor is better than the HH02 rotor. The results of helicopter performance prove that the NASA SC rotor provides better aerodynamic efficiency than the HH02 rotor.</p><!--/ Abstract__block -->\n<h3>Originality/value</h3>\n<p>The novelty of the paper is it proved the aerodynamic performance of supercritical airfoil is performing better than the HH02 airfoil. The results are validated with the experimental values and theoretical calculations from the momentum theory.</p><!--/ Abstract__block -->","PeriodicalId":55540,"journal":{"name":"Aircraft Engineering and Aerospace Technology","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hovering performance analysis of helicopter rotor blades using supercritical airfoil\",\"authors\":\"Inamul Hasan, Mukesh R., Radha Krishnan P., Srinath R., Boomadevi P.\",\"doi\":\"10.1108/aeat-09-2023-0244\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Purpose</h3>\\n<p>This study aims to find the characteristics of supercritical airfoil in helicopter rotor blades for hovering phase using numerical analysis and the validation using experimental results.</p><!--/ Abstract__block -->\\n<h3>Design/methodology/approach</h3>\\n<p>Using numerical analysis in the forward phase of the helicopter, supercritical airfoil is compared with the conventional airfoil for the aerodynamic performance. The multiple reference frame method is used to produce the results for rotational analysis. A grid independence test was carried out, and validation was obtained using benchmark values from NASA data.</p><!--/ Abstract__block -->\\n<h3>Findings</h3>\\n<p>From the analysis results, a supercritical airfoil in hovering flight analysis proved that the NASA SC rotor produces 25% at 5°, 26% at 12° and 32% better thrust at 8° of collective pitch than the HH02 rotor. Helicopter performance parameters are also calculated based on momentum theory. Theoretical calculations prove that the NASA SC rotor is better than the HH02 rotor. The results of helicopter performance prove that the NASA SC rotor provides better aerodynamic efficiency than the HH02 rotor.</p><!--/ Abstract__block -->\\n<h3>Originality/value</h3>\\n<p>The novelty of the paper is it proved the aerodynamic performance of supercritical airfoil is performing better than the HH02 airfoil. The results are validated with the experimental values and theoretical calculations from the momentum theory.</p><!--/ Abstract__block -->\",\"PeriodicalId\":55540,\"journal\":{\"name\":\"Aircraft Engineering and Aerospace Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aircraft Engineering and Aerospace Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1108/aeat-09-2023-0244\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aircraft Engineering and Aerospace Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1108/aeat-09-2023-0244","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

摘要

设计/方法/途径通过对直升机前进阶段的数值分析,比较了超临界机翼与传统机翼的气动性能。采用多参考框架法得出旋转分析结果。从分析结果来看,悬停飞行分析中的超临界机翼证明,与 HH02 旋翼相比,NASA SC 旋翼在 5° 时能产生 25% 的推力,在 12° 时能产生 26% 的推力,在 8° 时能产生 32% 的推力。直升机的性能参数也是根据动量理论计算得出的。理论计算证明,NASA SC 旋翼的性能优于 HH02 旋翼。直升机性能结果证明 NASA SC 旋翼比 HH02 旋翼具有更好的气动效率。结果与实验值和动量理论的理论计算结果进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hovering performance analysis of helicopter rotor blades using supercritical airfoil

Purpose

This study aims to find the characteristics of supercritical airfoil in helicopter rotor blades for hovering phase using numerical analysis and the validation using experimental results.

Design/methodology/approach

Using numerical analysis in the forward phase of the helicopter, supercritical airfoil is compared with the conventional airfoil for the aerodynamic performance. The multiple reference frame method is used to produce the results for rotational analysis. A grid independence test was carried out, and validation was obtained using benchmark values from NASA data.

Findings

From the analysis results, a supercritical airfoil in hovering flight analysis proved that the NASA SC rotor produces 25% at 5°, 26% at 12° and 32% better thrust at 8° of collective pitch than the HH02 rotor. Helicopter performance parameters are also calculated based on momentum theory. Theoretical calculations prove that the NASA SC rotor is better than the HH02 rotor. The results of helicopter performance prove that the NASA SC rotor provides better aerodynamic efficiency than the HH02 rotor.

Originality/value

The novelty of the paper is it proved the aerodynamic performance of supercritical airfoil is performing better than the HH02 airfoil. The results are validated with the experimental values and theoretical calculations from the momentum theory.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Aircraft Engineering and Aerospace Technology
Aircraft Engineering and Aerospace Technology 工程技术-工程:宇航
CiteScore
3.20
自引率
13.30%
发文量
168
审稿时长
8 months
期刊介绍: Aircraft Engineering and Aerospace Technology provides a broad coverage of the materials and techniques employed in the aircraft and aerospace industry. Its international perspectives allow readers to keep up to date with current thinking and developments in critical areas such as coping with increasingly overcrowded airways, the development of new materials, recent breakthroughs in navigation technology - and more.
期刊最新文献
Wind tunnel investigation of hemispherical forebody interaction on the drag coefficient of a D-shaped model Parameter tuning for active disturbance rejection control of fixed-wing UAV based on improved bald eagle search algorithm Integrating urban air mobility into smart cities: a proposal for relevant use cases in the next decades Heavy fuel preparation effects on the operation of a spark ignition unmanned aerial vehicle engine Flame stabilization and emission reduction: a comprehensive study on the influence of swirl velocity in hydrogen fuel-based burner design
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1