{"title":"甲烷-氩气介质中 CrO $$_{x}$$ /Al2O3 纳米粒子激光蒸发过程中的甲烷热解产物气相色谱分析","authors":"A. N. Pyryaev, Vl. N. Snytnikov","doi":"10.1134/s0010508223060059","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>This paper presents the results of a chromatographic analysis of gaseous products formed during the laser synthesis of catalytic Cr/Al<sub>2</sub>O<sub>3</sub> nanoparticles in a methane–argon medium. The main difficulties of such studies are noted. Methods for solving this problem and ways to optimize the methane pyrolysis accompanying the laser synthesis of nanoparticles are proposed. The fundamental possibility of simultaneous synthesis of catalytic nanoparticles and their use for methane pyrolysis are demonstrated. The main products of pyrolysis in this process are hydrogen and amorphous carbon. The maximum hydrogen yield is 4% (vol.). It is shown how the process can be optimized to increase the hydrogen yield and expand the range of reaction products for unsaturated hydrocarbons.</p>","PeriodicalId":10509,"journal":{"name":"Combustion, Explosion, and Shock Waves","volume":"34 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gas Chromatographic Analysis of Methane Pyrolysis Products during Laser Evaporation of CrO $$_{x}$$ /Al2O3 Nanoparticles in a Methane–Argon Medium\",\"authors\":\"A. N. Pyryaev, Vl. N. Snytnikov\",\"doi\":\"10.1134/s0010508223060059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>This paper presents the results of a chromatographic analysis of gaseous products formed during the laser synthesis of catalytic Cr/Al<sub>2</sub>O<sub>3</sub> nanoparticles in a methane–argon medium. The main difficulties of such studies are noted. Methods for solving this problem and ways to optimize the methane pyrolysis accompanying the laser synthesis of nanoparticles are proposed. The fundamental possibility of simultaneous synthesis of catalytic nanoparticles and their use for methane pyrolysis are demonstrated. The main products of pyrolysis in this process are hydrogen and amorphous carbon. The maximum hydrogen yield is 4% (vol.). It is shown how the process can be optimized to increase the hydrogen yield and expand the range of reaction products for unsaturated hydrocarbons.</p>\",\"PeriodicalId\":10509,\"journal\":{\"name\":\"Combustion, Explosion, and Shock Waves\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combustion, Explosion, and Shock Waves\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1134/s0010508223060059\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combustion, Explosion, and Shock Waves","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1134/s0010508223060059","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Gas Chromatographic Analysis of Methane Pyrolysis Products during Laser Evaporation of CrO $$_{x}$$ /Al2O3 Nanoparticles in a Methane–Argon Medium
Abstract
This paper presents the results of a chromatographic analysis of gaseous products formed during the laser synthesis of catalytic Cr/Al2O3 nanoparticles in a methane–argon medium. The main difficulties of such studies are noted. Methods for solving this problem and ways to optimize the methane pyrolysis accompanying the laser synthesis of nanoparticles are proposed. The fundamental possibility of simultaneous synthesis of catalytic nanoparticles and their use for methane pyrolysis are demonstrated. The main products of pyrolysis in this process are hydrogen and amorphous carbon. The maximum hydrogen yield is 4% (vol.). It is shown how the process can be optimized to increase the hydrogen yield and expand the range of reaction products for unsaturated hydrocarbons.
期刊介绍:
Combustion, Explosion, and Shock Waves a peer reviewed journal published in collaboration with the Siberian Branch of the Russian Academy of Sciences. The journal presents top-level studies in the physics and chemistry of combustion and detonation processes, structural and chemical transformation of matter in shock and detonation waves, and related phenomena. Each issue contains valuable information on initiation of detonation in condensed and gaseous phases, environmental consequences of combustion and explosion, engine and power unit combustion, production of new materials by shock and detonation waves, explosion welding, explosive compaction of powders, dynamic responses of materials and constructions, and hypervelocity impact.