{"title":"囊性卵巢病(COD)会改变牛输卵管的结构和功能","authors":"Deirdre Scully, Sven Reese, Sabine Kölle","doi":"10.1002/mrd.23725","DOIUrl":null,"url":null,"abstract":"<p>Cystic ovary disease (COD) is a common cause of subfertility in dairy cattle. Therefore, the aim of this study was to provide novel concepts for cyst classification and to investigate the effects of COD on tubal microarchitecture, oviductal metabolic function, and the formation of the sperm reservoir. Bovine Fallopian tubes affected by follicular cysts, follicular cysts with luteinization and luteal cysts were investigated by a variety of microscopic and histological techniques and compared to control cows in metestrus and diestrus. We defined three types of cysts involved in COD, each of which had a characteristic wall thickness, inner wall appearance and cellular pattern within the cyst aspirate. Regarding the Fallopian tube, each cyst type was associated with a characteristic morphology, specifically the microarchitecture of the folds in ampulla, epithelial cell ratios, and ciliated/secretory cell size and form. Furthermore, each cyst type showed different patterns of tubal glycoprotein and acidic mucopolysaccharide synthesis, which was highly variable as compared to the controls. Our studies are the first to characterize the effects of COD on the Fallopian tube, which promotes the establishment of novel, cyst-specific therapeutic concepts in cattle and helps gain a holistic view of the causes of subfertility in cows with COD.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mrd.23725","citationCount":"0","resultStr":"{\"title\":\"Cystic ovary disease (COD) alters structure and function of the bovine oviduct\",\"authors\":\"Deirdre Scully, Sven Reese, Sabine Kölle\",\"doi\":\"10.1002/mrd.23725\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Cystic ovary disease (COD) is a common cause of subfertility in dairy cattle. Therefore, the aim of this study was to provide novel concepts for cyst classification and to investigate the effects of COD on tubal microarchitecture, oviductal metabolic function, and the formation of the sperm reservoir. Bovine Fallopian tubes affected by follicular cysts, follicular cysts with luteinization and luteal cysts were investigated by a variety of microscopic and histological techniques and compared to control cows in metestrus and diestrus. We defined three types of cysts involved in COD, each of which had a characteristic wall thickness, inner wall appearance and cellular pattern within the cyst aspirate. Regarding the Fallopian tube, each cyst type was associated with a characteristic morphology, specifically the microarchitecture of the folds in ampulla, epithelial cell ratios, and ciliated/secretory cell size and form. Furthermore, each cyst type showed different patterns of tubal glycoprotein and acidic mucopolysaccharide synthesis, which was highly variable as compared to the controls. Our studies are the first to characterize the effects of COD on the Fallopian tube, which promotes the establishment of novel, cyst-specific therapeutic concepts in cattle and helps gain a holistic view of the causes of subfertility in cows with COD.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mrd.23725\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mrd.23725\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mrd.23725","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Cystic ovary disease (COD) alters structure and function of the bovine oviduct
Cystic ovary disease (COD) is a common cause of subfertility in dairy cattle. Therefore, the aim of this study was to provide novel concepts for cyst classification and to investigate the effects of COD on tubal microarchitecture, oviductal metabolic function, and the formation of the sperm reservoir. Bovine Fallopian tubes affected by follicular cysts, follicular cysts with luteinization and luteal cysts were investigated by a variety of microscopic and histological techniques and compared to control cows in metestrus and diestrus. We defined three types of cysts involved in COD, each of which had a characteristic wall thickness, inner wall appearance and cellular pattern within the cyst aspirate. Regarding the Fallopian tube, each cyst type was associated with a characteristic morphology, specifically the microarchitecture of the folds in ampulla, epithelial cell ratios, and ciliated/secretory cell size and form. Furthermore, each cyst type showed different patterns of tubal glycoprotein and acidic mucopolysaccharide synthesis, which was highly variable as compared to the controls. Our studies are the first to characterize the effects of COD on the Fallopian tube, which promotes the establishment of novel, cyst-specific therapeutic concepts in cattle and helps gain a holistic view of the causes of subfertility in cows with COD.