Trisha Chakraborty, Oscar A. Jimenez Gordillo, Michael Barrow, Alan R. Kramer, Michal Lipson, Thomas E. Murphy, and Karen E. Grutter
{"title":"低温下 SU-8 的热光学特性分析","authors":"Trisha Chakraborty, Oscar A. Jimenez Gordillo, Michael Barrow, Alan R. Kramer, Michal Lipson, Thomas E. Murphy, and Karen E. Grutter","doi":"10.1364/ome.509626","DOIUrl":null,"url":null,"abstract":"We measured the optical transmission through an SU-8 microring resonator inside a cryostat and analyzed the shift of the resonant wavelengths to determine the thermo-optic behavior around a wavelength of 1600 nm. As the temperature was decreased from room temperature (RT) to 3K, the refractive index of crosslinked SU-8 was measured to increase from 1.571 to 1.584, while the thermo-optic coefficient decreased by two orders of magnitude.","PeriodicalId":19548,"journal":{"name":"Optical Materials Express","volume":"16 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermo-optic characterization of SU-8 at cryogenic temperature\",\"authors\":\"Trisha Chakraborty, Oscar A. Jimenez Gordillo, Michael Barrow, Alan R. Kramer, Michal Lipson, Thomas E. Murphy, and Karen E. Grutter\",\"doi\":\"10.1364/ome.509626\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We measured the optical transmission through an SU-8 microring resonator inside a cryostat and analyzed the shift of the resonant wavelengths to determine the thermo-optic behavior around a wavelength of 1600 nm. As the temperature was decreased from room temperature (RT) to 3K, the refractive index of crosslinked SU-8 was measured to increase from 1.571 to 1.584, while the thermo-optic coefficient decreased by two orders of magnitude.\",\"PeriodicalId\":19548,\"journal\":{\"name\":\"Optical Materials Express\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optical Materials Express\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1364/ome.509626\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Materials Express","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1364/ome.509626","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Thermo-optic characterization of SU-8 at cryogenic temperature
We measured the optical transmission through an SU-8 microring resonator inside a cryostat and analyzed the shift of the resonant wavelengths to determine the thermo-optic behavior around a wavelength of 1600 nm. As the temperature was decreased from room temperature (RT) to 3K, the refractive index of crosslinked SU-8 was measured to increase from 1.571 to 1.584, while the thermo-optic coefficient decreased by two orders of magnitude.
期刊介绍:
The Optical Society (OSA) publishes high-quality, peer-reviewed articles in its portfolio of journals, which serve the full breadth of the optics and photonics community.
Optical Materials Express (OMEx), OSA''s open-access, rapid-review journal, primarily emphasizes advances in both conventional and novel optical materials, their properties, theory and modeling, synthesis and fabrication approaches for optics and photonics; how such materials contribute to novel optical behavior; and how they enable new or improved optical devices. The journal covers a full range of topics, including, but not limited to:
Artificially engineered optical structures
Biomaterials
Optical detector materials
Optical storage media
Materials for integrated optics
Nonlinear optical materials
Laser materials
Metamaterials
Nanomaterials
Organics and polymers
Soft materials
IR materials
Materials for fiber optics
Hybrid technologies
Materials for quantum photonics
Optical Materials Express considers original research articles, feature issue contributions, invited reviews, and comments on published articles. The Journal also publishes occasional short, timely opinion articles from experts and thought-leaders in the field on current or emerging topic areas that are generating significant interest.