{"title":"基于 SGNet 模型的轻型框架结构损伤诊断方法","authors":"C. Cai, W. Fu, X. Guo, D. Wu, J. Ren","doi":"10.1007/s40799-023-00697-3","DOIUrl":null,"url":null,"abstract":"<div><p>Due to the complex structure of most frame structure, a large amount of sensor data needs to be processed for damage diagnosis, which increases the computational cost of diagnosis models and poses a serious challenge to their fast, accurate, and efficient damage diagnosis. In order to address this issue, this paper proposes a novel lightweight damage diagnosis method of frame structure for mobile devices based on convolutional neural networks. This method first uses mean filtering to process the vibration data collected by sensors, and then innovatively combines two convolutional neural network models, ShuffleNet and GhostNet, to form a new lightweight convolutional neural network model called SGNet, thereby reducing the computational cost of the model while ensuring diagnosis accuracy. In order to test the performance of the method proposed in this article, experimental research on damage degree diagnosis and damage type diagnosis is conducted by taking the frame structure provided by Columbia University as the research object, and comparative experiments of performance are conducted with MobileNet, GhostNet, and ShuffleNet. The experimental results show that the lightweight damage diagnosis method for frame structure proposed in this article not only has high damage diagnosis accuracy, but also has fewer computational parameters, when the highest accuracy is 99.8%, the computational parameters are only 1 million. At the same time, it is superior to MobileNet, GhostNet, ShuffleNet in terms of diagnosis accuracy and computational cost, so it is an effective high-precision lightweight damage diagnosis method for frame structure.</p></div>","PeriodicalId":553,"journal":{"name":"Experimental Techniques","volume":"48 5","pages":"815 - 832"},"PeriodicalIF":1.5000,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Lightweight Damage Diagnosis Method for Frame Structure Based on SGNet Model\",\"authors\":\"C. Cai, W. Fu, X. Guo, D. Wu, J. Ren\",\"doi\":\"10.1007/s40799-023-00697-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Due to the complex structure of most frame structure, a large amount of sensor data needs to be processed for damage diagnosis, which increases the computational cost of diagnosis models and poses a serious challenge to their fast, accurate, and efficient damage diagnosis. In order to address this issue, this paper proposes a novel lightweight damage diagnosis method of frame structure for mobile devices based on convolutional neural networks. This method first uses mean filtering to process the vibration data collected by sensors, and then innovatively combines two convolutional neural network models, ShuffleNet and GhostNet, to form a new lightweight convolutional neural network model called SGNet, thereby reducing the computational cost of the model while ensuring diagnosis accuracy. In order to test the performance of the method proposed in this article, experimental research on damage degree diagnosis and damage type diagnosis is conducted by taking the frame structure provided by Columbia University as the research object, and comparative experiments of performance are conducted with MobileNet, GhostNet, and ShuffleNet. The experimental results show that the lightweight damage diagnosis method for frame structure proposed in this article not only has high damage diagnosis accuracy, but also has fewer computational parameters, when the highest accuracy is 99.8%, the computational parameters are only 1 million. At the same time, it is superior to MobileNet, GhostNet, ShuffleNet in terms of diagnosis accuracy and computational cost, so it is an effective high-precision lightweight damage diagnosis method for frame structure.</p></div>\",\"PeriodicalId\":553,\"journal\":{\"name\":\"Experimental Techniques\",\"volume\":\"48 5\",\"pages\":\"815 - 832\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental Techniques\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40799-023-00697-3\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Techniques","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s40799-023-00697-3","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
A Lightweight Damage Diagnosis Method for Frame Structure Based on SGNet Model
Due to the complex structure of most frame structure, a large amount of sensor data needs to be processed for damage diagnosis, which increases the computational cost of diagnosis models and poses a serious challenge to their fast, accurate, and efficient damage diagnosis. In order to address this issue, this paper proposes a novel lightweight damage diagnosis method of frame structure for mobile devices based on convolutional neural networks. This method first uses mean filtering to process the vibration data collected by sensors, and then innovatively combines two convolutional neural network models, ShuffleNet and GhostNet, to form a new lightweight convolutional neural network model called SGNet, thereby reducing the computational cost of the model while ensuring diagnosis accuracy. In order to test the performance of the method proposed in this article, experimental research on damage degree diagnosis and damage type diagnosis is conducted by taking the frame structure provided by Columbia University as the research object, and comparative experiments of performance are conducted with MobileNet, GhostNet, and ShuffleNet. The experimental results show that the lightweight damage diagnosis method for frame structure proposed in this article not only has high damage diagnosis accuracy, but also has fewer computational parameters, when the highest accuracy is 99.8%, the computational parameters are only 1 million. At the same time, it is superior to MobileNet, GhostNet, ShuffleNet in terms of diagnosis accuracy and computational cost, so it is an effective high-precision lightweight damage diagnosis method for frame structure.
期刊介绍:
Experimental Techniques is a bimonthly interdisciplinary publication of the Society for Experimental Mechanics focusing on the development, application and tutorial of experimental mechanics techniques.
The purpose for Experimental Techniques is to promote pedagogical, technical and practical advancements in experimental mechanics while supporting the Society''s mission and commitment to interdisciplinary application, research and development, education, and active promotion of experimental methods to:
- Increase the knowledge of physical phenomena
- Further the understanding of the behavior of materials, structures, and systems
- Provide the necessary physical observations necessary to improve and assess new analytical and computational approaches.