跟踪多知识概念掌握概率的概率生成模型

IF 3.4 3区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Frontiers of Computer Science Pub Date : 2024-01-22 DOI:10.1007/s11704-023-3008-x
Hengyu Liu, Tiancheng Zhang, Fan Li, Minghe Yu, Ge Yu
{"title":"跟踪多知识概念掌握概率的概率生成模型","authors":"Hengyu Liu, Tiancheng Zhang, Fan Li, Minghe Yu, Ge Yu","doi":"10.1007/s11704-023-3008-x","DOIUrl":null,"url":null,"abstract":"<p>Knowledge tracing aims to track students’ knowledge status over time to predict students’ future performance accurately. In a real environment, teachers expect knowledge tracing models to provide the interpretable result of knowledge status. Markov chain-based knowledge tracing (MCKT) models, such as Bayesian Knowledge Tracing, can track knowledge concept mastery probability over time. However, as the number of tracked knowledge concepts increases, the time complexity of MCKT predicting student performance increases exponentially (also called explaining away problem). When the number of tracked knowledge concepts is large, we cannot utilize MCKT to track knowledge concept mastery probability over time. In addition, the existing MCKT models only consider the relationship between students’ knowledge status and problems when modeling students’ responses but ignore the relationship between knowledge concepts in the same problem. To address these challenges, we propose an inTerpretable pRobAbilistiC gEnerative moDel (TRACED), which can track students’ numerous knowledge concepts mastery probabilities over time. To solve explain away problem, we design long and short-term memory (LSTM)-based networks to approximate the posterior distribution, predict students’ future performance, and propose a heuristic algorithm to train LSTMs and probabilistic graphical model jointly. To better model students’ exercise responses, we proposed a logarithmic linear model with three interactive strategies, which models students’ exercise responses by considering the relationship among students’ knowledge status, knowledge concept, and problems. We conduct experiments with four real-world datasets in three knowledge-driven tasks. The experimental results show that TRACED outperforms existing knowledge tracing methods in predicting students’ future performance and can learn the relationship among students, knowledge concepts, and problems from students’ exercise sequences. We also conduct several case studies. The case studies show that TRACED exhibits excellent interpretability and thus has the potential for personalized automatic feedback in the real-world educational environment.</p>","PeriodicalId":12640,"journal":{"name":"Frontiers of Computer Science","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A probabilistic generative model for tracking multi-knowledge concept mastery probability\",\"authors\":\"Hengyu Liu, Tiancheng Zhang, Fan Li, Minghe Yu, Ge Yu\",\"doi\":\"10.1007/s11704-023-3008-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Knowledge tracing aims to track students’ knowledge status over time to predict students’ future performance accurately. In a real environment, teachers expect knowledge tracing models to provide the interpretable result of knowledge status. Markov chain-based knowledge tracing (MCKT) models, such as Bayesian Knowledge Tracing, can track knowledge concept mastery probability over time. However, as the number of tracked knowledge concepts increases, the time complexity of MCKT predicting student performance increases exponentially (also called explaining away problem). When the number of tracked knowledge concepts is large, we cannot utilize MCKT to track knowledge concept mastery probability over time. In addition, the existing MCKT models only consider the relationship between students’ knowledge status and problems when modeling students’ responses but ignore the relationship between knowledge concepts in the same problem. To address these challenges, we propose an inTerpretable pRobAbilistiC gEnerative moDel (TRACED), which can track students’ numerous knowledge concepts mastery probabilities over time. To solve explain away problem, we design long and short-term memory (LSTM)-based networks to approximate the posterior distribution, predict students’ future performance, and propose a heuristic algorithm to train LSTMs and probabilistic graphical model jointly. To better model students’ exercise responses, we proposed a logarithmic linear model with three interactive strategies, which models students’ exercise responses by considering the relationship among students’ knowledge status, knowledge concept, and problems. We conduct experiments with four real-world datasets in three knowledge-driven tasks. The experimental results show that TRACED outperforms existing knowledge tracing methods in predicting students’ future performance and can learn the relationship among students, knowledge concepts, and problems from students’ exercise sequences. We also conduct several case studies. The case studies show that TRACED exhibits excellent interpretability and thus has the potential for personalized automatic feedback in the real-world educational environment.</p>\",\"PeriodicalId\":12640,\"journal\":{\"name\":\"Frontiers of Computer Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11704-023-3008-x\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11704-023-3008-x","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

知识追踪的目的是跟踪学生在一段时间内的知识状况,从而准确预测学生的未来表现。在现实环境中,教师希望知识追踪模型能提供可解释的知识状况结果。基于马尔可夫链的知识追踪(MCKT)模型,如贝叶斯知识追踪,可以追踪一段时间内知识概念的掌握概率。然而,随着跟踪知识概念数量的增加,MCKT 预测学生成绩的时间复杂性也会呈指数级增长(也称为解释问题)。当跟踪的知识概念数量较多时,我们就无法利用 MCKT 来跟踪知识概念在一段时间内的掌握概率。此外,现有的 MCKT 模型在对学生的反应建模时,只考虑了学生的知识状况与问题之间的关系,却忽略了同一问题中知识概念之间的关系。为了解决这些难题,我们提出了一种可解释的知识概念掌握概率模型(TRACED),该模型可以随时间跟踪学生对众多知识概念的掌握概率。为了解决解释问题,我们设计了基于长短期记忆(LSTM)的网络来逼近后验分布,预测学生的未来成绩,并提出了一种启发式算法来联合训练 LSTM 和概率图形模型。为了更好地模拟学生的练习反应,我们提出了具有三种交互策略的对数线性模型,该模型通过考虑学生的知识状况、知识概念和问题之间的关系来模拟学生的练习反应。我们在三个知识驱动任务中使用四个真实世界数据集进行了实验。实验结果表明,TRACED 在预测学生未来成绩方面优于现有的知识追踪方法,并能从学生的练习序列中学习学生、知识概念和问题之间的关系。我们还进行了几项案例研究。案例研究表明,TRACED 具有出色的可解释性,因此有可能在现实世界的教育环境中提供个性化的自动反馈。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A probabilistic generative model for tracking multi-knowledge concept mastery probability

Knowledge tracing aims to track students’ knowledge status over time to predict students’ future performance accurately. In a real environment, teachers expect knowledge tracing models to provide the interpretable result of knowledge status. Markov chain-based knowledge tracing (MCKT) models, such as Bayesian Knowledge Tracing, can track knowledge concept mastery probability over time. However, as the number of tracked knowledge concepts increases, the time complexity of MCKT predicting student performance increases exponentially (also called explaining away problem). When the number of tracked knowledge concepts is large, we cannot utilize MCKT to track knowledge concept mastery probability over time. In addition, the existing MCKT models only consider the relationship between students’ knowledge status and problems when modeling students’ responses but ignore the relationship between knowledge concepts in the same problem. To address these challenges, we propose an inTerpretable pRobAbilistiC gEnerative moDel (TRACED), which can track students’ numerous knowledge concepts mastery probabilities over time. To solve explain away problem, we design long and short-term memory (LSTM)-based networks to approximate the posterior distribution, predict students’ future performance, and propose a heuristic algorithm to train LSTMs and probabilistic graphical model jointly. To better model students’ exercise responses, we proposed a logarithmic linear model with three interactive strategies, which models students’ exercise responses by considering the relationship among students’ knowledge status, knowledge concept, and problems. We conduct experiments with four real-world datasets in three knowledge-driven tasks. The experimental results show that TRACED outperforms existing knowledge tracing methods in predicting students’ future performance and can learn the relationship among students, knowledge concepts, and problems from students’ exercise sequences. We also conduct several case studies. The case studies show that TRACED exhibits excellent interpretability and thus has the potential for personalized automatic feedback in the real-world educational environment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers of Computer Science
Frontiers of Computer Science COMPUTER SCIENCE, INFORMATION SYSTEMS-COMPUTER SCIENCE, SOFTWARE ENGINEERING
CiteScore
8.60
自引率
2.40%
发文量
799
审稿时长
6-12 weeks
期刊介绍: Frontiers of Computer Science aims to provide a forum for the publication of peer-reviewed papers to promote rapid communication and exchange between computer scientists. The journal publishes research papers and review articles in a wide range of topics, including: architecture, software, artificial intelligence, theoretical computer science, networks and communication, information systems, multimedia and graphics, information security, interdisciplinary, etc. The journal especially encourages papers from new emerging and multidisciplinary areas, as well as papers reflecting the international trends of research and development and on special topics reporting progress made by Chinese computer scientists.
期刊最新文献
A comprehensive survey of federated transfer learning: challenges, methods and applications DMFVAE: miRNA-disease associations prediction based on deep matrix factorization method with variational autoencoder Graph foundation model ABLkit: a Python toolkit for abductive learning SEOE: an option graph based semantically embedding method for prenatal depression detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1