鉴定人工智能应用中 GPU API Remoting 的网络要求

Tianxia Wang, Zhuofu Chen, Xingda Wei, Jinyu Gu, Rong Chen, Haibo Chen
{"title":"鉴定人工智能应用中 GPU API Remoting 的网络要求","authors":"Tianxia Wang, Zhuofu Chen, Xingda Wei, Jinyu Gu, Rong Chen, Haibo Chen","doi":"arxiv-2401.13354","DOIUrl":null,"url":null,"abstract":"GPU remoting is a promising technique for supporting AI applications.\nNetworking plays a key role in enabling remoting. However, for efficient\nremoting, the network requirements in terms of latency and bandwidth are\nunknown. In this paper, we take a GPU-centric approach to derive the minimum\nlatency and bandwidth requirements for GPU remoting, while ensuring no (or\nlittle) performance degradation for AI applications. Our study including\ntheoretical model demonstrates that, with careful remoting design, unmodified\nAI applications can run on the remoting setup using commodity networking\nhardware without any overhead or even with better performance, with low network\ndemands.","PeriodicalId":501333,"journal":{"name":"arXiv - CS - Operating Systems","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterizing Network Requirements for GPU API Remoting in AI Applications\",\"authors\":\"Tianxia Wang, Zhuofu Chen, Xingda Wei, Jinyu Gu, Rong Chen, Haibo Chen\",\"doi\":\"arxiv-2401.13354\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"GPU remoting is a promising technique for supporting AI applications.\\nNetworking plays a key role in enabling remoting. However, for efficient\\nremoting, the network requirements in terms of latency and bandwidth are\\nunknown. In this paper, we take a GPU-centric approach to derive the minimum\\nlatency and bandwidth requirements for GPU remoting, while ensuring no (or\\nlittle) performance degradation for AI applications. Our study including\\ntheoretical model demonstrates that, with careful remoting design, unmodified\\nAI applications can run on the remoting setup using commodity networking\\nhardware without any overhead or even with better performance, with low network\\ndemands.\",\"PeriodicalId\":501333,\"journal\":{\"name\":\"arXiv - CS - Operating Systems\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Operating Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2401.13354\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Operating Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2401.13354","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

GPU 远程控制是支持人工智能应用的一项前景广阔的技术。然而,要实现高效远程,网络在延迟和带宽方面的要求是未知的。在本文中,我们采用了一种以 GPU 为中心的方法来推导 GPU 远程通信的最低延迟和带宽要求,同时确保人工智能应用不会(或几乎不会)出现性能下降。我们的研究(包括理论模型)表明,通过精心的远程设计,未经修改的人工智能应用可以在使用商品网络硬件的远程设置上运行,而不会产生任何开销,甚至可以在网络需求较低的情况下获得更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Characterizing Network Requirements for GPU API Remoting in AI Applications
GPU remoting is a promising technique for supporting AI applications. Networking plays a key role in enabling remoting. However, for efficient remoting, the network requirements in terms of latency and bandwidth are unknown. In this paper, we take a GPU-centric approach to derive the minimum latency and bandwidth requirements for GPU remoting, while ensuring no (or little) performance degradation for AI applications. Our study including theoretical model demonstrates that, with careful remoting design, unmodified AI applications can run on the remoting setup using commodity networking hardware without any overhead or even with better performance, with low network demands.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysis of Synchronization Mechanisms in Operating Systems Skip TLB flushes for reused pages within mmap's eBPF-mm: Userspace-guided memory management in Linux with eBPF BULKHEAD: Secure, Scalable, and Efficient Kernel Compartmentalization with PKS Rethinking Programmed I/O for Fast Devices, Cheap Cores, and Coherent Interconnects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1