{"title":"利用深度强化学习进行子轨迹聚类","authors":"","doi":"10.1007/s00778-023-00833-w","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>Sub-trajectory clustering is a fundamental problem in many trajectory applications. Existing approaches usually divide the clustering procedure into two phases: segmenting trajectories into sub-trajectories and then clustering these sub-trajectories. However, researchers need to develop complex human-crafted segmentation rules for specific applications, making the clustering results sensitive to the segmentation rules and lacking in generality. To solve this problem, we propose a novel algorithm using the clustering results to guide the segmentation, which is based on reinforcement learning (RL). The novelty is that the segmentation and clustering components cooperate closely and improve each other continuously to yield better clustering results. To devise our RL-based algorithm, we model the procedure of trajectory segmentation as a Markov decision process (MDP). We apply Deep-Q-Network (DQN) learning to train an RL model for the segmentation and achieve excellent clustering results. Experimental results on real datasets demonstrate the superior performance of the proposed RL-based approach over state-of-the-art methods.</p>","PeriodicalId":501532,"journal":{"name":"The VLDB Journal","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sub-trajectory clustering with deep reinforcement learning\",\"authors\":\"\",\"doi\":\"10.1007/s00778-023-00833-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>Sub-trajectory clustering is a fundamental problem in many trajectory applications. Existing approaches usually divide the clustering procedure into two phases: segmenting trajectories into sub-trajectories and then clustering these sub-trajectories. However, researchers need to develop complex human-crafted segmentation rules for specific applications, making the clustering results sensitive to the segmentation rules and lacking in generality. To solve this problem, we propose a novel algorithm using the clustering results to guide the segmentation, which is based on reinforcement learning (RL). The novelty is that the segmentation and clustering components cooperate closely and improve each other continuously to yield better clustering results. To devise our RL-based algorithm, we model the procedure of trajectory segmentation as a Markov decision process (MDP). We apply Deep-Q-Network (DQN) learning to train an RL model for the segmentation and achieve excellent clustering results. Experimental results on real datasets demonstrate the superior performance of the proposed RL-based approach over state-of-the-art methods.</p>\",\"PeriodicalId\":501532,\"journal\":{\"name\":\"The VLDB Journal\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The VLDB Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00778-023-00833-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The VLDB Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00778-023-00833-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Sub-trajectory clustering with deep reinforcement learning
Abstract
Sub-trajectory clustering is a fundamental problem in many trajectory applications. Existing approaches usually divide the clustering procedure into two phases: segmenting trajectories into sub-trajectories and then clustering these sub-trajectories. However, researchers need to develop complex human-crafted segmentation rules for specific applications, making the clustering results sensitive to the segmentation rules and lacking in generality. To solve this problem, we propose a novel algorithm using the clustering results to guide the segmentation, which is based on reinforcement learning (RL). The novelty is that the segmentation and clustering components cooperate closely and improve each other continuously to yield better clustering results. To devise our RL-based algorithm, we model the procedure of trajectory segmentation as a Markov decision process (MDP). We apply Deep-Q-Network (DQN) learning to train an RL model for the segmentation and achieve excellent clustering results. Experimental results on real datasets demonstrate the superior performance of the proposed RL-based approach over state-of-the-art methods.