Arthur Brack, Elias Entrup, Markos Stamatakis, Pascal Buschermöhle, Anett Hoppe, Ralph Ewerth
{"title":"利用跨域多任务学习对研究论文中的连续句子进行分类","authors":"Arthur Brack, Elias Entrup, Markos Stamatakis, Pascal Buschermöhle, Anett Hoppe, Ralph Ewerth","doi":"10.1007/s00799-023-00392-z","DOIUrl":null,"url":null,"abstract":"<p>The automatic semantic structuring of scientific text allows for more efficient reading of research articles and is an important indexing step for academic search engines. Sequential sentence classification is an essential structuring task and targets the categorisation of sentences based on their content and context. However, the potential of transfer learning for sentence classification across different scientific domains and text types, such as full papers and abstracts, has not yet been explored in prior work. In this paper, we present a systematic analysis of transfer learning for scientific sequential sentence classification. For this purpose, we derive seven research questions and present several contributions to address them: (1) We suggest a novel uniform deep learning architecture and multi-task learning for cross-domain sequential sentence classification in scientific text. (2) We tailor two transfer learning methods to deal with the given task, namely sequential transfer learning and multi-task learning. (3) We compare the results of the two best models using qualitative examples in a case study. (4) We provide an approach for the semi-automatic identification of semantically related classes across annotation schemes and analyse the results for four annotation schemes. The clusters and underlying semantic vectors are validated using <i>k</i>-means clustering. (5) Our comprehensive experimental results indicate that when using the proposed multi-task learning architecture, models trained on datasets from different scientific domains benefit from one another. Our approach significantly outperforms state of the art on full paper datasets while being on par for datasets consisting of abstracts.</p>","PeriodicalId":44974,"journal":{"name":"International Journal on Digital Libraries","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sequential sentence classification in research papers using cross-domain multi-task learning\",\"authors\":\"Arthur Brack, Elias Entrup, Markos Stamatakis, Pascal Buschermöhle, Anett Hoppe, Ralph Ewerth\",\"doi\":\"10.1007/s00799-023-00392-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The automatic semantic structuring of scientific text allows for more efficient reading of research articles and is an important indexing step for academic search engines. Sequential sentence classification is an essential structuring task and targets the categorisation of sentences based on their content and context. However, the potential of transfer learning for sentence classification across different scientific domains and text types, such as full papers and abstracts, has not yet been explored in prior work. In this paper, we present a systematic analysis of transfer learning for scientific sequential sentence classification. For this purpose, we derive seven research questions and present several contributions to address them: (1) We suggest a novel uniform deep learning architecture and multi-task learning for cross-domain sequential sentence classification in scientific text. (2) We tailor two transfer learning methods to deal with the given task, namely sequential transfer learning and multi-task learning. (3) We compare the results of the two best models using qualitative examples in a case study. (4) We provide an approach for the semi-automatic identification of semantically related classes across annotation schemes and analyse the results for four annotation schemes. The clusters and underlying semantic vectors are validated using <i>k</i>-means clustering. (5) Our comprehensive experimental results indicate that when using the proposed multi-task learning architecture, models trained on datasets from different scientific domains benefit from one another. Our approach significantly outperforms state of the art on full paper datasets while being on par for datasets consisting of abstracts.</p>\",\"PeriodicalId\":44974,\"journal\":{\"name\":\"International Journal on Digital Libraries\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal on Digital Libraries\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00799-023-00392-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"INFORMATION SCIENCE & LIBRARY SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal on Digital Libraries","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00799-023-00392-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INFORMATION SCIENCE & LIBRARY SCIENCE","Score":null,"Total":0}
Sequential sentence classification in research papers using cross-domain multi-task learning
The automatic semantic structuring of scientific text allows for more efficient reading of research articles and is an important indexing step for academic search engines. Sequential sentence classification is an essential structuring task and targets the categorisation of sentences based on their content and context. However, the potential of transfer learning for sentence classification across different scientific domains and text types, such as full papers and abstracts, has not yet been explored in prior work. In this paper, we present a systematic analysis of transfer learning for scientific sequential sentence classification. For this purpose, we derive seven research questions and present several contributions to address them: (1) We suggest a novel uniform deep learning architecture and multi-task learning for cross-domain sequential sentence classification in scientific text. (2) We tailor two transfer learning methods to deal with the given task, namely sequential transfer learning and multi-task learning. (3) We compare the results of the two best models using qualitative examples in a case study. (4) We provide an approach for the semi-automatic identification of semantically related classes across annotation schemes and analyse the results for four annotation schemes. The clusters and underlying semantic vectors are validated using k-means clustering. (5) Our comprehensive experimental results indicate that when using the proposed multi-task learning architecture, models trained on datasets from different scientific domains benefit from one another. Our approach significantly outperforms state of the art on full paper datasets while being on par for datasets consisting of abstracts.
期刊介绍:
The International Journal on Digital Libraries (IJDL) examines the theory and practice of acquisition definition organization management preservation and dissemination of digital information via global networking. It covers all aspects of digital libraries (DLs) from large-scale heterogeneous data and information management & access to linking and connectivity to security privacy and policies to its application use and evaluation.The scope of IJDL includes but is not limited to: The FAIR principle and the digital libraries infrastructure Findable: Information access and retrieval; semantic search; data and information exploration; information navigation; smart indexing and searching; resource discovery Accessible: visualization and digital collections; user interfaces; interfaces for handicapped users; HCI and UX in DLs; Security and privacy in DLs; multimodal access Interoperable: metadata (definition management curation integration); syntactic and semantic interoperability; linked data Reusable: reproducibility; Open Science; sustainability profitability repeatability of research results; confidentiality and privacy issues in DLs Digital Library Architectures including heterogeneous and dynamic data management; data and repositories Acquisition of digital information: authoring environments for digital objects; digitization of traditional content Digital Archiving and Preservation Digital Preservation and curation Digital archiving Web Archiving Archiving and preservation Strategies AI for Digital Libraries Machine Learning for DLs Data Mining in DLs NLP for DLs Applications of Digital Libraries Digital Humanities Open Data and their reuse Scholarly DLs (incl. bibliometrics altmetrics) Epigraphy and Paleography Digital Museums Future trends in Digital Libraries Definition of DLs in a ubiquitous digital library world Datafication of digital collections Interaction and user experience (UX) in DLs Information visualization Collection understanding Privacy and security Multimodal user interfaces Accessibility (or "Access for users with disabilities") UX studies