Mi Soon Park, Chido Wee, Junsoo Lee, Byung Hee Kim, Hak-Ryul Kim, In-Hwan Kim
{"title":"通过溶剂结晶和脂肪酶催化乙醇溶解相结合的方法浓缩金枪鱼油中的二十二碳六烯酸","authors":"Mi Soon Park, Chido Wee, Junsoo Lee, Byung Hee Kim, Hak-Ryul Kim, In-Hwan Kim","doi":"10.1002/aocs.12817","DOIUrl":null,"url":null,"abstract":"<p>The docosahexaenoic acid (DHA) was concentrated from tuna oil fatty acid using solvent crystallization combined with lipase-catalyzed ethanolysis. In the first step, solvent crystallization was carried out to concentrate DHA from tuna oil fatty acid using acetonitrile as a solvent. The optimal conditions of solvent crystallization were the crystallization temperature of −40°C and the fatty acid to solvent ratio of 1:8 (w/v). This step increased the DHA content in the original tuna oil fatty acid from 22% up to 61%. In the second step, lipase-catalyzed ethanolysis was conducted with DHA-enriched fatty acid from the first step using Lipozyme RM IM (from <i>Rhizomucor miehei</i>) as a biocatalyst. The optimum conditions of this second step were the reaction temperature of 20°C and the molar ratio of 1:1 (fatty acid to ethanol). Overall, DHA enrichment with purity of 85% was obtained by the two step processes.</p>","PeriodicalId":17182,"journal":{"name":"Journal of the American Oil Chemists Society","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Concentration of docosahexsaenoic acid from tuna oil by a combination of solvent crystallization and lipase-catalyzed ethanolysis\",\"authors\":\"Mi Soon Park, Chido Wee, Junsoo Lee, Byung Hee Kim, Hak-Ryul Kim, In-Hwan Kim\",\"doi\":\"10.1002/aocs.12817\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The docosahexaenoic acid (DHA) was concentrated from tuna oil fatty acid using solvent crystallization combined with lipase-catalyzed ethanolysis. In the first step, solvent crystallization was carried out to concentrate DHA from tuna oil fatty acid using acetonitrile as a solvent. The optimal conditions of solvent crystallization were the crystallization temperature of −40°C and the fatty acid to solvent ratio of 1:8 (w/v). This step increased the DHA content in the original tuna oil fatty acid from 22% up to 61%. In the second step, lipase-catalyzed ethanolysis was conducted with DHA-enriched fatty acid from the first step using Lipozyme RM IM (from <i>Rhizomucor miehei</i>) as a biocatalyst. The optimum conditions of this second step were the reaction temperature of 20°C and the molar ratio of 1:1 (fatty acid to ethanol). Overall, DHA enrichment with purity of 85% was obtained by the two step processes.</p>\",\"PeriodicalId\":17182,\"journal\":{\"name\":\"Journal of the American Oil Chemists Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Oil Chemists Society\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/aocs.12817\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Oil Chemists Society","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aocs.12817","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
摘要
利用溶剂结晶和脂肪酶催化的乙醇分解从金枪鱼油脂肪酸中浓缩出二十二碳六烯酸(DHA)。第一步,以乙腈为溶剂进行溶剂结晶,从金枪鱼油脂肪酸中浓缩 DHA。溶剂结晶的最佳条件是结晶温度为 -40°C,脂肪酸与溶剂的比例为 1:8(w/v)。这一步骤将原始金枪鱼油脂肪酸中的 DHA 含量从 22% 提高到 61%。在第二步中,使用 Lipozyme RM IM(来自 Rhizomucor miehei)作为生物催化剂,对第一步中富含 DHA 的脂肪酸进行脂肪酶催化乙醇分解。第二步的最佳条件是反应温度为 20°C,摩尔比为 1:1(脂肪酸与乙醇)。总之,通过这两步工艺,DHA 的富集纯度达到了 85%。
Concentration of docosahexsaenoic acid from tuna oil by a combination of solvent crystallization and lipase-catalyzed ethanolysis
The docosahexaenoic acid (DHA) was concentrated from tuna oil fatty acid using solvent crystallization combined with lipase-catalyzed ethanolysis. In the first step, solvent crystallization was carried out to concentrate DHA from tuna oil fatty acid using acetonitrile as a solvent. The optimal conditions of solvent crystallization were the crystallization temperature of −40°C and the fatty acid to solvent ratio of 1:8 (w/v). This step increased the DHA content in the original tuna oil fatty acid from 22% up to 61%. In the second step, lipase-catalyzed ethanolysis was conducted with DHA-enriched fatty acid from the first step using Lipozyme RM IM (from Rhizomucor miehei) as a biocatalyst. The optimum conditions of this second step were the reaction temperature of 20°C and the molar ratio of 1:1 (fatty acid to ethanol). Overall, DHA enrichment with purity of 85% was obtained by the two step processes.
期刊介绍:
The Journal of the American Oil Chemists’ Society (JAOCS) is an international peer-reviewed journal that publishes significant original scientific research and technological advances on fats, oils, oilseed proteins, and related materials through original research articles, invited reviews, short communications, and letters to the editor. We seek to publish reports that will significantly advance scientific understanding through hypothesis driven research, innovations, and important new information pertaining to analysis, properties, processing, products, and applications of these food and industrial resources. Breakthroughs in food science and technology, biotechnology (including genomics, biomechanisms, biocatalysis and bioprocessing), and industrial products and applications are particularly appropriate.
JAOCS also considers reports on the lipid composition of new, unique, and traditional sources of lipids that definitively address a research hypothesis and advances scientific understanding. However, the genus and species of the source must be verified by appropriate means of classification. In addition, the GPS location of the harvested materials and seed or vegetative samples should be deposited in an accredited germplasm repository. Compositional data suitable for Original Research Articles must embody replicated estimate of tissue constituents, such as oil, protein, carbohydrate, fatty acid, phospholipid, tocopherol, sterol, and carotenoid compositions. Other components unique to the specific plant or animal source may be reported. Furthermore, lipid composition papers should incorporate elements of yeartoyear, environmental, and/ or cultivar variations through use of appropriate statistical analyses.