水性二氧化钛界面。

IF 11.7 1区 化学 Q1 CHEMISTRY, PHYSICAL Annual review of physical chemistry Pub Date : 2024-06-01 Epub Date: 2024-06-14 DOI:10.1146/annurev-physchem-090722-015957
Annabella Selloni
{"title":"水性二氧化钛界面。","authors":"Annabella Selloni","doi":"10.1146/annurev-physchem-090722-015957","DOIUrl":null,"url":null,"abstract":"<p><p>Water-metal oxide interfaces are central to many phenomena and applications, ranging from material corrosion and dissolution to photoelectrochemistry and bioengineering. In particular, the discovery of photocatalytic water splitting on TiO<sub>2</sub> has motivated intensive studies of water-TiO<sub>2</sub> interfaces for decades. So far, a broad understanding of the interaction of water vapor with several TiO<sub>2</sub> surfaces has been obtained. However, much less is known about liquid water-TiO<sub>2</sub> interfaces, which are more relevant to many practical applications. Probing these complex systems at the molecular level is experimentally challenging and is sometimes possible only through computational studies. This review summarizes recent advances in the atomistic understanding, mostly through computational simulations, of the structure and dynamics of interfacial water on TiO<sub>2</sub> surfaces. The main focus is on the nature, molecular or dissociated, of water in direct contact with low-index defect-free crystalline surfaces. The hydroxyls resulting from water dissociation are essential in the photooxidation of water and critically affect the surface chemistry of TiO<sub>2.</sub></p>","PeriodicalId":7967,"journal":{"name":"Annual review of physical chemistry","volume":null,"pages":null},"PeriodicalIF":11.7000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aqueous Titania Interfaces.\",\"authors\":\"Annabella Selloni\",\"doi\":\"10.1146/annurev-physchem-090722-015957\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Water-metal oxide interfaces are central to many phenomena and applications, ranging from material corrosion and dissolution to photoelectrochemistry and bioengineering. In particular, the discovery of photocatalytic water splitting on TiO<sub>2</sub> has motivated intensive studies of water-TiO<sub>2</sub> interfaces for decades. So far, a broad understanding of the interaction of water vapor with several TiO<sub>2</sub> surfaces has been obtained. However, much less is known about liquid water-TiO<sub>2</sub> interfaces, which are more relevant to many practical applications. Probing these complex systems at the molecular level is experimentally challenging and is sometimes possible only through computational studies. This review summarizes recent advances in the atomistic understanding, mostly through computational simulations, of the structure and dynamics of interfacial water on TiO<sub>2</sub> surfaces. The main focus is on the nature, molecular or dissociated, of water in direct contact with low-index defect-free crystalline surfaces. The hydroxyls resulting from water dissociation are essential in the photooxidation of water and critically affect the surface chemistry of TiO<sub>2.</sub></p>\",\"PeriodicalId\":7967,\"journal\":{\"name\":\"Annual review of physical chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":11.7000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual review of physical chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-physchem-090722-015957\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of physical chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1146/annurev-physchem-090722-015957","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/14 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

水-金属氧化物界面是从材料腐蚀和溶解到光电化学和生物工程等许多现象和应用的核心。特别是在二氧化钛上发现的光催化水分离现象,几十年来推动了对水-二氧化钛界面的深入研究。迄今为止,人们已经对水蒸气与若干二氧化钛表面的相互作用有了广泛的了解。然而,人们对液态水-二氧化钛界面的了解要少得多,而液态水-二氧化钛界面与许多实际应用更为相关。在分子水平上探测这些复杂的系统在实验上具有挑战性,有时只能通过计算研究来实现。本综述总结了主要通过计算模拟对二氧化钛表面界面水的结构和动力学进行原子理解的最新进展。主要关注与低指数无缺陷结晶表面直接接触的水的性质(分子或离解)。水解离产生的羟基在水的光氧化过程中至关重要,并对二氧化钛的表面化学性质产生关键影响。物理化学年刊》第 75 卷的最终在线出版日期预计为 2024 年 4 月。修订后的预计日期请参见 http://www.annualreviews.org/page/journal/pubdates。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Aqueous Titania Interfaces.

Water-metal oxide interfaces are central to many phenomena and applications, ranging from material corrosion and dissolution to photoelectrochemistry and bioengineering. In particular, the discovery of photocatalytic water splitting on TiO2 has motivated intensive studies of water-TiO2 interfaces for decades. So far, a broad understanding of the interaction of water vapor with several TiO2 surfaces has been obtained. However, much less is known about liquid water-TiO2 interfaces, which are more relevant to many practical applications. Probing these complex systems at the molecular level is experimentally challenging and is sometimes possible only through computational studies. This review summarizes recent advances in the atomistic understanding, mostly through computational simulations, of the structure and dynamics of interfacial water on TiO2 surfaces. The main focus is on the nature, molecular or dissociated, of water in direct contact with low-index defect-free crystalline surfaces. The hydroxyls resulting from water dissociation are essential in the photooxidation of water and critically affect the surface chemistry of TiO2.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
28.00
自引率
0.00%
发文量
21
期刊介绍: The Annual Review of Physical Chemistry has been published since 1950 and is a comprehensive resource for significant advancements in the field. It encompasses various sub-disciplines such as biophysical chemistry, chemical kinetics, colloids, electrochemistry, geochemistry and cosmochemistry, chemistry of the atmosphere and climate, laser chemistry and ultrafast processes, the liquid state, magnetic resonance, physical organic chemistry, polymers and macromolecules, and others.
期刊最新文献
Reinvented: An Attosecond Chemist. Aqueous Titania Interfaces. Dynamics of Anions: From Bound to Unbound States and Everything In Between. Molecular Insights into Chemical Reactions at Aqueous Aerosol Interfaces. Single-Molecule Spectroscopy and Super-Resolution Mapping of Physicochemical Parameters in Living Cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1