用 dRBFC 分析法分析植物活细胞中病毒诱导的双链 RNA。

Q4 Biochemistry, Genetics and Molecular Biology Methods in molecular biology Pub Date : 2024-01-01 DOI:10.1007/978-1-0716-3702-9_5
Ying Zhang, Xinyue Fan, Xiaofei Cheng
{"title":"用 dRBFC 分析法分析植物活细胞中病毒诱导的双链 RNA。","authors":"Ying Zhang, Xinyue Fan, Xiaofei Cheng","doi":"10.1007/978-1-0716-3702-9_5","DOIUrl":null,"url":null,"abstract":"<p><p>Double-stranded RNA (dsRNA) is the replicate intermediate of all RNA viruses, and is also recognized by their host cells as a virus-invading molecule signal. Analysis of the localization and dynamic of virus-induced dsRNA can reveal crucial information concerning the molecular mechanism of virus replication and host responses to viral infection. In this chapter, we provide an easy and efficient protocol called dsRNA binding-dependent fluorescence complementation (dRBFC) assay for labeling the dsRNAs in living plant cells using two different plant RNA viruses, namely potato virus X and turnip mosaic virus. Moreover, both YFP- and mRFP-based dRBFC plasmids are available for the flexibility of experiment design.</p>","PeriodicalId":18490,"journal":{"name":"Methods in molecular biology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of Virus-Induced Double-Stranded RNA in Living Plant Cells by the dRBFC Assay.\",\"authors\":\"Ying Zhang, Xinyue Fan, Xiaofei Cheng\",\"doi\":\"10.1007/978-1-0716-3702-9_5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Double-stranded RNA (dsRNA) is the replicate intermediate of all RNA viruses, and is also recognized by their host cells as a virus-invading molecule signal. Analysis of the localization and dynamic of virus-induced dsRNA can reveal crucial information concerning the molecular mechanism of virus replication and host responses to viral infection. In this chapter, we provide an easy and efficient protocol called dsRNA binding-dependent fluorescence complementation (dRBFC) assay for labeling the dsRNAs in living plant cells using two different plant RNA viruses, namely potato virus X and turnip mosaic virus. Moreover, both YFP- and mRFP-based dRBFC plasmids are available for the flexibility of experiment design.</p>\",\"PeriodicalId\":18490,\"journal\":{\"name\":\"Methods in molecular biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methods in molecular biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-1-0716-3702-9_5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in molecular biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-1-0716-3702-9_5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

摘要

双链 RNA(dsRNA)是所有 RNA 病毒的复制中间体,也是宿主细胞识别的病毒入侵分子信号。对病毒诱导的dsRNA的定位和动态分析可以揭示病毒复制的分子机制和宿主对病毒感染的反应等重要信息。在本章中,我们利用两种不同的植物 RNA 病毒(即马铃薯病毒 X 和芜菁花叶病毒),提供了一种名为 dsRNA 结合依赖性荧光互补(dRBFC)的简便高效的方案,用于标记活体植物细胞中的 dsRNA。此外,还提供基于 YFP 和 mRFP 的 dRBFC 质粒,以便灵活设计实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analysis of Virus-Induced Double-Stranded RNA in Living Plant Cells by the dRBFC Assay.

Double-stranded RNA (dsRNA) is the replicate intermediate of all RNA viruses, and is also recognized by their host cells as a virus-invading molecule signal. Analysis of the localization and dynamic of virus-induced dsRNA can reveal crucial information concerning the molecular mechanism of virus replication and host responses to viral infection. In this chapter, we provide an easy and efficient protocol called dsRNA binding-dependent fluorescence complementation (dRBFC) assay for labeling the dsRNAs in living plant cells using two different plant RNA viruses, namely potato virus X and turnip mosaic virus. Moreover, both YFP- and mRFP-based dRBFC plasmids are available for the flexibility of experiment design.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Methods in molecular biology
Methods in molecular biology Biochemistry, Genetics and Molecular Biology-Genetics
CiteScore
2.00
自引率
0.00%
发文量
3536
期刊介绍: For over 20 years, biological scientists have come to rely on the research protocols and methodologies in the critically acclaimed Methods in Molecular Biology series. The series was the first to introduce the step-by-step protocols approach that has become the standard in all biomedical protocol publishing. Each protocol is provided in readily-reproducible step-by-step fashion, opening with an introductory overview, a list of the materials and reagents needed to complete the experiment, and followed by a detailed procedure that is supported with a helpful notes section offering tips and tricks of the trade as well as troubleshooting advice.
期刊最新文献
A Guideline Strategy for Identifying a Viral Gene/Protein Evading Antiviral Innate Immunity. A Guideline Strategy for Identifying Genes/Proteins Regulating Antiviral Innate Immunity. Application of Proteomics Technology Based on LC-MS Combined with Western Blotting and Co-IP in Antiviral Innate Immunity. Click Chemistry in Detecting Protein Modification. CRISPR-Mediated Construction of Gene-Knockout Mice for Investigating Antiviral Innate Immunity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1