Marius Frederik Schneider, Miriam Vogt, Johanna Scheuermann, Veronika Müller, Antje H L Fischer-Hentrich, Thomas Kremer, Sebastian Lugert, Friedrich Metzger, Manfred Kudernatsch, Gerhard Kluger, Till Hartlieb, Soheyl Noachtar, Christian Vollmar, Mathias Kunz, Jörg Christian Tonn, Roland Coras, Ingmar Blümcke, Claudia Pace, Florian Heinen, Christoph Klein, Heidrun Potschka, Ingo Borggraefe
{"title":"两种 SCN1A 反义 RNA 在儿童和青少年癫痫患者大脑中的表达谱。","authors":"Marius Frederik Schneider, Miriam Vogt, Johanna Scheuermann, Veronika Müller, Antje H L Fischer-Hentrich, Thomas Kremer, Sebastian Lugert, Friedrich Metzger, Manfred Kudernatsch, Gerhard Kluger, Till Hartlieb, Soheyl Noachtar, Christian Vollmar, Mathias Kunz, Jörg Christian Tonn, Roland Coras, Ingmar Blümcke, Claudia Pace, Florian Heinen, Christoph Klein, Heidrun Potschka, Ingo Borggraefe","doi":"10.1515/tnsci-2022-0330","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Heterozygous mutations within the voltage-gated sodium channel α subunit (<i>SCN1A</i>) are responsible for the majority of cases of Dravet syndrome (DS), a severe developmental and epileptic encephalopathy. Development of novel therapeutic approaches is mandatory in order to directly target the molecular consequences of the genetic defect. The aim of the present study was to investigate whether cis-acting long non-coding RNAs (lncRNAs) of <i>SCN1A</i> are expressed in brain specimens of children and adolescent with epilepsy as these molecules comprise possible targets for precision-based therapy approaches.</p><p><strong>Methods: </strong>We investigated <i>SCN1A</i> mRNA expression and expression of two <i>SCN1A</i> related antisense RNAs in brain tissues in different age groups of pediatric non-Dravet patients who underwent surgery for drug resistant epilepsy. The effect of different antisense oligonucleotides (ASOs) directed against <i>SCN1A</i> specific antisense RNAs on <i>SCN1A</i> expression was tested.</p><p><strong>Results: </strong>The <i>SCN1A</i> related antisense RNAs <i>SCN1A</i>-dsAS (downstream antisense, RefSeq identifier: NR_110598) and <i>SCN1A</i>-usAS (upstream AS, <i>SCN1A</i>-AS, RefSeq identifier: NR_110260) were widely expressed in the brain of pediatric patients. Expression patterns revealed a negative correlation of SCN1A-dsAS and a positive correlation of lncRNA <i>SCN1A</i>-usAS with <i>SCN1A</i> mRNA expression. Transfection of SK-N-AS cells with an ASO targeted against <i>SCN1A</i>-dsAS was associated with a significant enhancement of <i>SCN1A</i> mRNA expression and reduction in <i>SCN1A</i>-dsAS transcripts.</p><p><strong>Conclusion: </strong>These findings support the role of <i>SCN1A</i>-dsAS in the suppression of <i>SCN1A</i> mRNA generation. Considering the haploinsufficiency in genetic <i>SCN1A</i> related DS, <i>SCN1A</i>-dsAS is an interesting target candidate for the development of ASOs (AntagoNATs) based precision medicine therapeutic approaches aiming to enhance <i>SCN1A</i> expression in DS.</p>","PeriodicalId":23227,"journal":{"name":"Translational Neuroscience","volume":"15 1","pages":"20220330"},"PeriodicalIF":1.8000,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10811528/pdf/","citationCount":"0","resultStr":"{\"title\":\"Brain expression profiles of two <i>SCN1A</i> antisense RNAs in children and adolescents with epilepsy.\",\"authors\":\"Marius Frederik Schneider, Miriam Vogt, Johanna Scheuermann, Veronika Müller, Antje H L Fischer-Hentrich, Thomas Kremer, Sebastian Lugert, Friedrich Metzger, Manfred Kudernatsch, Gerhard Kluger, Till Hartlieb, Soheyl Noachtar, Christian Vollmar, Mathias Kunz, Jörg Christian Tonn, Roland Coras, Ingmar Blümcke, Claudia Pace, Florian Heinen, Christoph Klein, Heidrun Potschka, Ingo Borggraefe\",\"doi\":\"10.1515/tnsci-2022-0330\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>Heterozygous mutations within the voltage-gated sodium channel α subunit (<i>SCN1A</i>) are responsible for the majority of cases of Dravet syndrome (DS), a severe developmental and epileptic encephalopathy. Development of novel therapeutic approaches is mandatory in order to directly target the molecular consequences of the genetic defect. The aim of the present study was to investigate whether cis-acting long non-coding RNAs (lncRNAs) of <i>SCN1A</i> are expressed in brain specimens of children and adolescent with epilepsy as these molecules comprise possible targets for precision-based therapy approaches.</p><p><strong>Methods: </strong>We investigated <i>SCN1A</i> mRNA expression and expression of two <i>SCN1A</i> related antisense RNAs in brain tissues in different age groups of pediatric non-Dravet patients who underwent surgery for drug resistant epilepsy. The effect of different antisense oligonucleotides (ASOs) directed against <i>SCN1A</i> specific antisense RNAs on <i>SCN1A</i> expression was tested.</p><p><strong>Results: </strong>The <i>SCN1A</i> related antisense RNAs <i>SCN1A</i>-dsAS (downstream antisense, RefSeq identifier: NR_110598) and <i>SCN1A</i>-usAS (upstream AS, <i>SCN1A</i>-AS, RefSeq identifier: NR_110260) were widely expressed in the brain of pediatric patients. Expression patterns revealed a negative correlation of SCN1A-dsAS and a positive correlation of lncRNA <i>SCN1A</i>-usAS with <i>SCN1A</i> mRNA expression. Transfection of SK-N-AS cells with an ASO targeted against <i>SCN1A</i>-dsAS was associated with a significant enhancement of <i>SCN1A</i> mRNA expression and reduction in <i>SCN1A</i>-dsAS transcripts.</p><p><strong>Conclusion: </strong>These findings support the role of <i>SCN1A</i>-dsAS in the suppression of <i>SCN1A</i> mRNA generation. Considering the haploinsufficiency in genetic <i>SCN1A</i> related DS, <i>SCN1A</i>-dsAS is an interesting target candidate for the development of ASOs (AntagoNATs) based precision medicine therapeutic approaches aiming to enhance <i>SCN1A</i> expression in DS.</p>\",\"PeriodicalId\":23227,\"journal\":{\"name\":\"Translational Neuroscience\",\"volume\":\"15 1\",\"pages\":\"20220330\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10811528/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Translational Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1515/tnsci-2022-0330\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q4\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1515/tnsci-2022-0330","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Brain expression profiles of two SCN1A antisense RNAs in children and adolescents with epilepsy.
Objective: Heterozygous mutations within the voltage-gated sodium channel α subunit (SCN1A) are responsible for the majority of cases of Dravet syndrome (DS), a severe developmental and epileptic encephalopathy. Development of novel therapeutic approaches is mandatory in order to directly target the molecular consequences of the genetic defect. The aim of the present study was to investigate whether cis-acting long non-coding RNAs (lncRNAs) of SCN1A are expressed in brain specimens of children and adolescent with epilepsy as these molecules comprise possible targets for precision-based therapy approaches.
Methods: We investigated SCN1A mRNA expression and expression of two SCN1A related antisense RNAs in brain tissues in different age groups of pediatric non-Dravet patients who underwent surgery for drug resistant epilepsy. The effect of different antisense oligonucleotides (ASOs) directed against SCN1A specific antisense RNAs on SCN1A expression was tested.
Results: The SCN1A related antisense RNAs SCN1A-dsAS (downstream antisense, RefSeq identifier: NR_110598) and SCN1A-usAS (upstream AS, SCN1A-AS, RefSeq identifier: NR_110260) were widely expressed in the brain of pediatric patients. Expression patterns revealed a negative correlation of SCN1A-dsAS and a positive correlation of lncRNA SCN1A-usAS with SCN1A mRNA expression. Transfection of SK-N-AS cells with an ASO targeted against SCN1A-dsAS was associated with a significant enhancement of SCN1A mRNA expression and reduction in SCN1A-dsAS transcripts.
Conclusion: These findings support the role of SCN1A-dsAS in the suppression of SCN1A mRNA generation. Considering the haploinsufficiency in genetic SCN1A related DS, SCN1A-dsAS is an interesting target candidate for the development of ASOs (AntagoNATs) based precision medicine therapeutic approaches aiming to enhance SCN1A expression in DS.
期刊介绍:
Translational Neuroscience provides a closer interaction between basic and clinical neuroscientists to expand understanding of brain structure, function and disease, and translate this knowledge into clinical applications and novel therapies of nervous system disorders.