{"title":"Hsa_circ_0092355通过调控miR-543/PDE5A通路加速甲状腺乳头状癌的进展","authors":"Zhijun Sun, Min Zhang, Yangmei Ye, Leilei Yang","doi":"10.1055/a-2233-0245","DOIUrl":null,"url":null,"abstract":"<p><p>CircRNAs have been found to participate in the progression of various tumors. In the present study, we aimed to clarify the role of hsa_circ_0092355 in papillary thyroid cancer (PTC) cell development. RT-qPCR was used to determine the expression of hsa_circ_0092355, miR-543, and PDE5A. PTC cell proliferation was ascertained via a cell colony formation assay and the CCK-8 test. Western blotting was performed to examine the expression levels of PDE5A and apoptosis-associated proteins (Bcl-2 and Bax) in PTC cells. A scratch wound assay was performed to measure the migration of PTC cells. A mouse xenograft test was performed to assess the effects of hsa_circ_0092355 <i>in vivo</i>. RIP and dual-luciferase reporter assays confirmed the association between miR-543 and hsa_circ_0092355 or PDE5A. Associations between miR-543, hsa_circ_0092355, and PDE5A were evaluated using Pearson's correlation coefficient. Upregulation of hsa_circ_0092355 was observed in PTC tissues. The hsa_circ_0092355 knockdown blocked the proliferation and migration of PTC cells and induced apoptosis. Moreover, hsa_circ_0092355 knockdown blocked PTC xenograft tumor growth <i>in vivo</i>. The miR-543 inhibitor could reverse the changes induced by hsa_circ_0092355 knockdown by hsa_circ_0092355 targeting miR-543. Furthermore, miR-543 suppresses PTC progression by downregulating PDE5A expression. Our findings suggest that the PTC tumor promoter hsa_circ_0092355 may promote carcinogenesis by controlling the miR-543/PDE5A pathway.</p>","PeriodicalId":12999,"journal":{"name":"Hormone and Metabolic Research","volume":" ","pages":"381-391"},"PeriodicalIF":2.0000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hsa_circ_0092355 Accelerates Papillary Thyroid Cancer Progression by Regulating the miR-543/PDE5A Pathway.\",\"authors\":\"Zhijun Sun, Min Zhang, Yangmei Ye, Leilei Yang\",\"doi\":\"10.1055/a-2233-0245\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>CircRNAs have been found to participate in the progression of various tumors. In the present study, we aimed to clarify the role of hsa_circ_0092355 in papillary thyroid cancer (PTC) cell development. RT-qPCR was used to determine the expression of hsa_circ_0092355, miR-543, and PDE5A. PTC cell proliferation was ascertained via a cell colony formation assay and the CCK-8 test. Western blotting was performed to examine the expression levels of PDE5A and apoptosis-associated proteins (Bcl-2 and Bax) in PTC cells. A scratch wound assay was performed to measure the migration of PTC cells. A mouse xenograft test was performed to assess the effects of hsa_circ_0092355 <i>in vivo</i>. RIP and dual-luciferase reporter assays confirmed the association between miR-543 and hsa_circ_0092355 or PDE5A. Associations between miR-543, hsa_circ_0092355, and PDE5A were evaluated using Pearson's correlation coefficient. Upregulation of hsa_circ_0092355 was observed in PTC tissues. The hsa_circ_0092355 knockdown blocked the proliferation and migration of PTC cells and induced apoptosis. Moreover, hsa_circ_0092355 knockdown blocked PTC xenograft tumor growth <i>in vivo</i>. The miR-543 inhibitor could reverse the changes induced by hsa_circ_0092355 knockdown by hsa_circ_0092355 targeting miR-543. Furthermore, miR-543 suppresses PTC progression by downregulating PDE5A expression. Our findings suggest that the PTC tumor promoter hsa_circ_0092355 may promote carcinogenesis by controlling the miR-543/PDE5A pathway.</p>\",\"PeriodicalId\":12999,\"journal\":{\"name\":\"Hormone and Metabolic Research\",\"volume\":\" \",\"pages\":\"381-391\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hormone and Metabolic Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1055/a-2233-0245\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hormone and Metabolic Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1055/a-2233-0245","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/29 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
Hsa_circ_0092355 Accelerates Papillary Thyroid Cancer Progression by Regulating the miR-543/PDE5A Pathway.
CircRNAs have been found to participate in the progression of various tumors. In the present study, we aimed to clarify the role of hsa_circ_0092355 in papillary thyroid cancer (PTC) cell development. RT-qPCR was used to determine the expression of hsa_circ_0092355, miR-543, and PDE5A. PTC cell proliferation was ascertained via a cell colony formation assay and the CCK-8 test. Western blotting was performed to examine the expression levels of PDE5A and apoptosis-associated proteins (Bcl-2 and Bax) in PTC cells. A scratch wound assay was performed to measure the migration of PTC cells. A mouse xenograft test was performed to assess the effects of hsa_circ_0092355 in vivo. RIP and dual-luciferase reporter assays confirmed the association between miR-543 and hsa_circ_0092355 or PDE5A. Associations between miR-543, hsa_circ_0092355, and PDE5A were evaluated using Pearson's correlation coefficient. Upregulation of hsa_circ_0092355 was observed in PTC tissues. The hsa_circ_0092355 knockdown blocked the proliferation and migration of PTC cells and induced apoptosis. Moreover, hsa_circ_0092355 knockdown blocked PTC xenograft tumor growth in vivo. The miR-543 inhibitor could reverse the changes induced by hsa_circ_0092355 knockdown by hsa_circ_0092355 targeting miR-543. Furthermore, miR-543 suppresses PTC progression by downregulating PDE5A expression. Our findings suggest that the PTC tumor promoter hsa_circ_0092355 may promote carcinogenesis by controlling the miR-543/PDE5A pathway.
期刊介绍:
Covering the fields of endocrinology and metabolism from both, a clinical and basic science perspective, this well regarded journal publishes original articles, and short communications on cutting edge topics.
Speedy publication time is given high priority, ensuring that endocrinologists worldwide get timely, fast-breaking information as it happens.
Hormone and Metabolic Research presents reviews, original papers, and short communications, and includes a section on Innovative Methods. With a preference for experimental over observational studies, this journal disseminates new and reliable experimental data from across the field of endocrinology and metabolism to researchers, scientists and doctors world-wide.