{"title":"矢量自适应光学:拓展光学校正的前沿。","authors":"Qiming Zhang, Min Gu","doi":"10.1038/s41377-023-01358-1","DOIUrl":null,"url":null,"abstract":"<p><p>Researchers at the University of Oxford have introduced a groundbreaking technique called vectorial adaptive optics (V-AO), which extends the capabilities of traditional adaptive optics to correct for both polarization and phase aberrations. This novel approach opens new possibilities for manipulating the complex vectorial field in optical systems, enabling higher-dimensional feedback correction.</p>","PeriodicalId":18093,"journal":{"name":"Light, science & applications","volume":"13 1","pages":"32"},"PeriodicalIF":19.4000,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10825150/pdf/","citationCount":"0","resultStr":"{\"title\":\"Vectorial adaptive optics: expanding the frontiers of optical correction.\",\"authors\":\"Qiming Zhang, Min Gu\",\"doi\":\"10.1038/s41377-023-01358-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Researchers at the University of Oxford have introduced a groundbreaking technique called vectorial adaptive optics (V-AO), which extends the capabilities of traditional adaptive optics to correct for both polarization and phase aberrations. This novel approach opens new possibilities for manipulating the complex vectorial field in optical systems, enabling higher-dimensional feedback correction.</p>\",\"PeriodicalId\":18093,\"journal\":{\"name\":\"Light, science & applications\",\"volume\":\"13 1\",\"pages\":\"32\"},\"PeriodicalIF\":19.4000,\"publicationDate\":\"2024-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10825150/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Light, science & applications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1038/s41377-023-01358-1\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Light, science & applications","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41377-023-01358-1","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Vectorial adaptive optics: expanding the frontiers of optical correction.
Researchers at the University of Oxford have introduced a groundbreaking technique called vectorial adaptive optics (V-AO), which extends the capabilities of traditional adaptive optics to correct for both polarization and phase aberrations. This novel approach opens new possibilities for manipulating the complex vectorial field in optical systems, enabling higher-dimensional feedback correction.
期刊介绍:
Light: Science & Applications is an open-access, fully peer-reviewed publication.It publishes high-quality optics and photonics research globally, covering fundamental research and important issues in engineering and applied sciences related to optics and photonics.