{"title":"了解自闭症初中生在基于兴趣的课外活动中的 STEM 成果:定性研究","authors":"Kavitha Murthi, Yu-Lun Chen, Wendy Martin, Ariana Riccio, Kristie Patten","doi":"10.1007/s11165-024-10158-5","DOIUrl":null,"url":null,"abstract":"<p>Current research underscores that there are only a few evidence-based programs that teach STEM (science, technology, engineering, and mathematics) as part of their curriculum, especially for autistic students. Even fewer programs focus on engineering and design learning. Hence, we developed an informal afterschool maker program to develop autistic and non-autistic students’ interests in engineering to understand their experiences learning STEM concepts and values while applying the engineering mindset to develop projects. This qualitative study aimed to explore and understand students’ experiences participating in STEM activities in the maker club. We interviewed twenty-six students (seventeen autistic and nine non-autistic), nine teachers, and thirteen parents representing diverse cultural and socio-economic backgrounds across three public middle schools in a large urban metropolitan city between 2018 and 2019. Our thematic analysis yielded four themes: <i>(1) active participation in STEM; (2) curiosity about STEM topics, concepts, and practices, (3) capacity-building to engage in STEM learning; and 4) understanding of the importance of STEM education in daily life.</i> The results of this study enabled us to understand that students were deeply engaged with the content and curriculum of our program, expanded their knowledge base about scientific concepts, used engineering-specific scientific terminologies, and engaged with the engineering design process to conceptualize, test, improvise, and problem-solve. Furthermore, this afterschool engineering education program created a safe, nurturing, and stimulating environment for students to build engineering readiness skills.</p>","PeriodicalId":47988,"journal":{"name":"Research in Science Education","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Understanding STEM Outcomes for Autistic Middle Schoolers in an Interest-Based, Afterschool Program: A Qualitative Study\",\"authors\":\"Kavitha Murthi, Yu-Lun Chen, Wendy Martin, Ariana Riccio, Kristie Patten\",\"doi\":\"10.1007/s11165-024-10158-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Current research underscores that there are only a few evidence-based programs that teach STEM (science, technology, engineering, and mathematics) as part of their curriculum, especially for autistic students. Even fewer programs focus on engineering and design learning. Hence, we developed an informal afterschool maker program to develop autistic and non-autistic students’ interests in engineering to understand their experiences learning STEM concepts and values while applying the engineering mindset to develop projects. This qualitative study aimed to explore and understand students’ experiences participating in STEM activities in the maker club. We interviewed twenty-six students (seventeen autistic and nine non-autistic), nine teachers, and thirteen parents representing diverse cultural and socio-economic backgrounds across three public middle schools in a large urban metropolitan city between 2018 and 2019. Our thematic analysis yielded four themes: <i>(1) active participation in STEM; (2) curiosity about STEM topics, concepts, and practices, (3) capacity-building to engage in STEM learning; and 4) understanding of the importance of STEM education in daily life.</i> The results of this study enabled us to understand that students were deeply engaged with the content and curriculum of our program, expanded their knowledge base about scientific concepts, used engineering-specific scientific terminologies, and engaged with the engineering design process to conceptualize, test, improvise, and problem-solve. Furthermore, this afterschool engineering education program created a safe, nurturing, and stimulating environment for students to build engineering readiness skills.</p>\",\"PeriodicalId\":47988,\"journal\":{\"name\":\"Research in Science Education\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research in Science Education\",\"FirstCategoryId\":\"95\",\"ListUrlMain\":\"https://doi.org/10.1007/s11165-024-10158-5\",\"RegionNum\":3,\"RegionCategory\":\"教育学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"EDUCATION & EDUCATIONAL RESEARCH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in Science Education","FirstCategoryId":"95","ListUrlMain":"https://doi.org/10.1007/s11165-024-10158-5","RegionNum":3,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
Understanding STEM Outcomes for Autistic Middle Schoolers in an Interest-Based, Afterschool Program: A Qualitative Study
Current research underscores that there are only a few evidence-based programs that teach STEM (science, technology, engineering, and mathematics) as part of their curriculum, especially for autistic students. Even fewer programs focus on engineering and design learning. Hence, we developed an informal afterschool maker program to develop autistic and non-autistic students’ interests in engineering to understand their experiences learning STEM concepts and values while applying the engineering mindset to develop projects. This qualitative study aimed to explore and understand students’ experiences participating in STEM activities in the maker club. We interviewed twenty-six students (seventeen autistic and nine non-autistic), nine teachers, and thirteen parents representing diverse cultural and socio-economic backgrounds across three public middle schools in a large urban metropolitan city between 2018 and 2019. Our thematic analysis yielded four themes: (1) active participation in STEM; (2) curiosity about STEM topics, concepts, and practices, (3) capacity-building to engage in STEM learning; and 4) understanding of the importance of STEM education in daily life. The results of this study enabled us to understand that students were deeply engaged with the content and curriculum of our program, expanded their knowledge base about scientific concepts, used engineering-specific scientific terminologies, and engaged with the engineering design process to conceptualize, test, improvise, and problem-solve. Furthermore, this afterschool engineering education program created a safe, nurturing, and stimulating environment for students to build engineering readiness skills.
期刊介绍:
2020 Five-Year Impact Factor: 4.021
2020 Impact Factor: 5.439
Ranking: 107/1319 (Education) – Scopus
2020 CiteScore 34.7 – Scopus
Research in Science Education (RISE ) is highly regarded and widely recognised as a leading international journal for the promotion of scholarly science education research that is of interest to a wide readership.
RISE publishes scholarly work that promotes science education research in all contexts and at all levels of education. This intention is aligned with the goals of Australasian Science Education Research Association (ASERA), the association connected with the journal.
You should consider submitting your manscript to RISE if your research:
Examines contexts such as early childhood, primary, secondary, tertiary, workplace, and informal learning as they relate to science education; and
Advances our knowledge in science education research rather than reproducing what we already know.
RISE will consider scholarly works that explore areas such as STEM, health, environment, cognitive science, neuroscience, psychology and higher education where science education is forefronted.
The scholarly works of interest published within RISE reflect and speak to a diversity of opinions, approaches and contexts. Additionally, the journal’s editorial team welcomes a diversity of form in relation to science education-focused submissions. With this in mind, RISE seeks to publish empirical research papers.
Empircal contributions are:
Theoretically or conceptually grounded;
Relevant to science education theory and practice;
Highlight limitations of the study; and
Identify possible future research opportunities.
From time to time, we commission independent reviewers to undertake book reviews of recent monographs, edited collections and/or textbooks.
Before you submit your manuscript to RISE, please consider the following checklist. Your paper is:
No longer than 6000 words, including references.
Sufficiently proof read to ensure strong grammar, syntax, coherence and good readability;
Explicitly stating the significant and/or innovative contribution to the body of knowledge in your field in science education;
Internationalised in the sense that your work has relevance beyond your context to a broader audience; and
Making a contribution to the ongoing conversation by engaging substantively with prior research published in RISE.
While we encourage authors to submit papers to a maximum length of 6000 words, in rare cases where the authors make a persuasive case that a work makes a highly significant original contribution to knowledge in science education, the editors may choose to publish longer works.