梯度下降法的新型步长

IF 0.8 4区 管理学 Q4 OPERATIONS RESEARCH & MANAGEMENT SCIENCE Operations Research Letters Pub Date : 2024-01-24 DOI:10.1016/j.orl.2024.107072
Pham Thi Hoai , Nguyen The Vinh , Nguyen Phung Hai Chung
{"title":"梯度下降法的新型步长","authors":"Pham Thi Hoai ,&nbsp;Nguyen The Vinh ,&nbsp;Nguyen Phung Hai Chung","doi":"10.1016/j.orl.2024.107072","DOIUrl":null,"url":null,"abstract":"<div><p>We propose a novel adaptive stepsize for the gradient descent scheme to solve unconstrained nonlinear optimization problems. With the convex and smooth objective satisfying locally Lipschitz gradient we obtain the complexity <span><math><mi>O</mi><mrow><mo>(</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>k</mi></mrow></mfrac><mo>)</mo></mrow></math></span> of <span><math><mi>f</mi><mo>(</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>k</mi></mrow></msup><mo>)</mo><mo>−</mo><msub><mrow><mi>f</mi></mrow><mrow><mo>⁎</mo></mrow></msub></math></span><span> at most. By using the idea of the new stepsize, we propose another new algorithm based on the projected gradient for solving a class of nonconvex optimization problems over a closed convex set. The computational experiments show the efficiency of the new method.</span></p></div>","PeriodicalId":54682,"journal":{"name":"Operations Research Letters","volume":"53 ","pages":"Article 107072"},"PeriodicalIF":0.8000,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel stepsize for gradient descent method\",\"authors\":\"Pham Thi Hoai ,&nbsp;Nguyen The Vinh ,&nbsp;Nguyen Phung Hai Chung\",\"doi\":\"10.1016/j.orl.2024.107072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We propose a novel adaptive stepsize for the gradient descent scheme to solve unconstrained nonlinear optimization problems. With the convex and smooth objective satisfying locally Lipschitz gradient we obtain the complexity <span><math><mi>O</mi><mrow><mo>(</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>k</mi></mrow></mfrac><mo>)</mo></mrow></math></span> of <span><math><mi>f</mi><mo>(</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>k</mi></mrow></msup><mo>)</mo><mo>−</mo><msub><mrow><mi>f</mi></mrow><mrow><mo>⁎</mo></mrow></msub></math></span><span> at most. By using the idea of the new stepsize, we propose another new algorithm based on the projected gradient for solving a class of nonconvex optimization problems over a closed convex set. The computational experiments show the efficiency of the new method.</span></p></div>\",\"PeriodicalId\":54682,\"journal\":{\"name\":\"Operations Research Letters\",\"volume\":\"53 \",\"pages\":\"Article 107072\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Operations Research Letters\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167637724000087\",\"RegionNum\":4,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"OPERATIONS RESEARCH & MANAGEMENT SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Operations Research Letters","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167637724000087","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

我们为梯度下降方案提出了一种新的自适应步长,用于解决无约束非线性优化问题。在凸平滑目标满足局部 Lipschitz 梯度的情况下,我们最多可以得到 f(xk)-f⁎ 的复杂度 O(1k)。利用新步长的思想,我们提出了另一种基于投影梯度的新算法,用于求解封闭凸集上的一类非凸优化问题。计算实验证明了新方法的高效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A novel stepsize for gradient descent method

We propose a novel adaptive stepsize for the gradient descent scheme to solve unconstrained nonlinear optimization problems. With the convex and smooth objective satisfying locally Lipschitz gradient we obtain the complexity O(1k) of f(xk)f at most. By using the idea of the new stepsize, we propose another new algorithm based on the projected gradient for solving a class of nonconvex optimization problems over a closed convex set. The computational experiments show the efficiency of the new method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Operations Research Letters
Operations Research Letters 管理科学-运筹学与管理科学
CiteScore
2.10
自引率
9.10%
发文量
111
审稿时长
83 days
期刊介绍: Operations Research Letters is committed to the rapid review and fast publication of short articles on all aspects of operations research and analytics. Apart from a limitation to eight journal pages, quality, originality, relevance and clarity are the only criteria for selecting the papers to be published. ORL covers the broad field of optimization, stochastic models and game theory. Specific areas of interest include networks, routing, location, queueing, scheduling, inventory, reliability, and financial engineering. We wish to explore interfaces with other fields such as life sciences and health care, artificial intelligence and machine learning, energy distribution, and computational social sciences and humanities. Our traditional strength is in methodology, including theory, modelling, algorithms and computational studies. We also welcome novel applications and concise literature reviews.
期刊最新文献
Break maximization for round-robin tournaments without consecutive breaks Anchored rescheduling problem with non-availability periods On BASTA for discrete-time queues Assessing the accuracy of externalities prediction in a LCFS-PR M/G/1 queue under partial information Optimal strategies and values for monotone and classical mean-variance preferences coincide when asset prices are continuous
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1