Manojlo Vukovic, Dusan Jakovetic, Dragana Bajovic, Soummya Kar
{"title":"相关重尾噪声下的非线性共识+创新:均方收敛率和渐近线","authors":"Manojlo Vukovic, Dusan Jakovetic, Dragana Bajovic, Soummya Kar","doi":"10.1137/22m1543197","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Control and Optimization, Volume 62, Issue 1, Page 376-399, February 2024. <br/> Abstract. We consider distributed recursive estimation of consensus+innovations type in the presence of heavy-tailed sensing and communication noises. We allow that the sensing and communication noises are mutually correlated while independent and identically distributed in time, and that they may both have infinite moments of order higher than one (hence having infinite variances). Such heavy-tailed, infinite-variance noises are highly relevant in practice and are shown to occur, e.g., in dense internet of things deployments. We develop a consensus+innovations distributed estimator that employs a general nonlinearity in both consensus and innovations steps to combat the noise. We establish the estimator’s almost sure convergence, asymptotic normality, and mean squared error (MSE) convergence. Moreover, we establish and explicitly quantify for the estimator a sublinear MSE convergence rate. We then quantify through analytical examples the effects of the nonlinearity choices and the noises correlation on the system performance. Finally, numerical examples corroborate our findings and verify that the proposed method works in the simultaneous heavy-tail communication-sensing noise setting, while existing methods fail under the same noise conditions.","PeriodicalId":49531,"journal":{"name":"SIAM Journal on Control and Optimization","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonlinear Consensus+Innovations under Correlated Heavy-Tailed Noises: Mean Square Convergence Rate and Asymptotics\",\"authors\":\"Manojlo Vukovic, Dusan Jakovetic, Dragana Bajovic, Soummya Kar\",\"doi\":\"10.1137/22m1543197\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Control and Optimization, Volume 62, Issue 1, Page 376-399, February 2024. <br/> Abstract. We consider distributed recursive estimation of consensus+innovations type in the presence of heavy-tailed sensing and communication noises. We allow that the sensing and communication noises are mutually correlated while independent and identically distributed in time, and that they may both have infinite moments of order higher than one (hence having infinite variances). Such heavy-tailed, infinite-variance noises are highly relevant in practice and are shown to occur, e.g., in dense internet of things deployments. We develop a consensus+innovations distributed estimator that employs a general nonlinearity in both consensus and innovations steps to combat the noise. We establish the estimator’s almost sure convergence, asymptotic normality, and mean squared error (MSE) convergence. Moreover, we establish and explicitly quantify for the estimator a sublinear MSE convergence rate. We then quantify through analytical examples the effects of the nonlinearity choices and the noises correlation on the system performance. Finally, numerical examples corroborate our findings and verify that the proposed method works in the simultaneous heavy-tail communication-sensing noise setting, while existing methods fail under the same noise conditions.\",\"PeriodicalId\":49531,\"journal\":{\"name\":\"SIAM Journal on Control and Optimization\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Control and Optimization\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/22m1543197\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Control and Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/22m1543197","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Nonlinear Consensus+Innovations under Correlated Heavy-Tailed Noises: Mean Square Convergence Rate and Asymptotics
SIAM Journal on Control and Optimization, Volume 62, Issue 1, Page 376-399, February 2024. Abstract. We consider distributed recursive estimation of consensus+innovations type in the presence of heavy-tailed sensing and communication noises. We allow that the sensing and communication noises are mutually correlated while independent and identically distributed in time, and that they may both have infinite moments of order higher than one (hence having infinite variances). Such heavy-tailed, infinite-variance noises are highly relevant in practice and are shown to occur, e.g., in dense internet of things deployments. We develop a consensus+innovations distributed estimator that employs a general nonlinearity in both consensus and innovations steps to combat the noise. We establish the estimator’s almost sure convergence, asymptotic normality, and mean squared error (MSE) convergence. Moreover, we establish and explicitly quantify for the estimator a sublinear MSE convergence rate. We then quantify through analytical examples the effects of the nonlinearity choices and the noises correlation on the system performance. Finally, numerical examples corroborate our findings and verify that the proposed method works in the simultaneous heavy-tail communication-sensing noise setting, while existing methods fail under the same noise conditions.
期刊介绍:
SIAM Journal on Control and Optimization (SICON) publishes original research articles on the mathematics and applications of control theory and certain parts of optimization theory. Papers considered for publication must be significant at both the mathematical level and the level of applications or potential applications. Papers containing mostly routine mathematics or those with no discernible connection to control and systems theory or optimization will not be considered for publication. From time to time, the journal will also publish authoritative surveys of important subject areas in control theory and optimization whose level of maturity permits a clear and unified exposition.
The broad areas mentioned above are intended to encompass a wide range of mathematical techniques and scientific, engineering, economic, and industrial applications. These include stochastic and deterministic methods in control, estimation, and identification of systems; modeling and realization of complex control systems; the numerical analysis and related computational methodology of control processes and allied issues; and the development of mathematical theories and techniques that give new insights into old problems or provide the basis for further progress in control theory and optimization. Within the field of optimization, the journal focuses on the parts that are relevant to dynamic and control systems. Contributions to numerical methodology are also welcome in accordance with these aims, especially as related to large-scale problems and decomposition as well as to fundamental questions of convergence and approximation.