{"title":"制备具有宽带电磁波吸收特性的 CIP@TiO2 复合材料","authors":"","doi":"10.1007/s12613-023-2707-5","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>Scholars aim for the improved impedance matching (<em>Z</em>) of materials while maintaining their excellent wave absorption properties. Based on the hydrolysis characteristics of isopropyl titanate, a simple preparation process for the coating of carbonyl iron powder (CIP) with TiO<sub>2</sub> was designed. Given the TiO<sub>2</sub> coating, the <em>Z</em> of the CIP@TiO<sub>2</sub> composite was adjusted well by decreasing the dielectric constant. Moreover, the interfacial polarization of CIP@TiO<sub>2</sub> was enhanced. Ultimately, the electromagnetic-wave (EMW) absorption property of the CIP@TiO<sub>2</sub> composite was improved substantially, the minimum reflection loss reached −46.07 dB, and the effective absorption bandwidth can reach 8 GHz at the composite thickness of 1.5 mm. Moreover, compared with CIP, the oxidation resistance of CIP@TiO<sub>2</sub> showed remarkable improvement. The results revealed that the oxidation starting temperature of CIP@TiO<sub>2</sub> was about 400°C, whereas the uncoated CIP had an oxidation starting temperature of approximately 250°C. Moreover, the largest oxidation rate temperature of CIP@TiO<sub>2</sub> increased to around 550°C. This work opens up a novel strategy for the production of high-performance EMW absorbers via structural design.</p>","PeriodicalId":14030,"journal":{"name":"International Journal of Minerals, Metallurgy, and Materials","volume":"1 1","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preparation of CIP@TiO2 composite with broadband electromagnetic wave absorption properties\",\"authors\":\"\",\"doi\":\"10.1007/s12613-023-2707-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>Scholars aim for the improved impedance matching (<em>Z</em>) of materials while maintaining their excellent wave absorption properties. Based on the hydrolysis characteristics of isopropyl titanate, a simple preparation process for the coating of carbonyl iron powder (CIP) with TiO<sub>2</sub> was designed. Given the TiO<sub>2</sub> coating, the <em>Z</em> of the CIP@TiO<sub>2</sub> composite was adjusted well by decreasing the dielectric constant. Moreover, the interfacial polarization of CIP@TiO<sub>2</sub> was enhanced. Ultimately, the electromagnetic-wave (EMW) absorption property of the CIP@TiO<sub>2</sub> composite was improved substantially, the minimum reflection loss reached −46.07 dB, and the effective absorption bandwidth can reach 8 GHz at the composite thickness of 1.5 mm. Moreover, compared with CIP, the oxidation resistance of CIP@TiO<sub>2</sub> showed remarkable improvement. The results revealed that the oxidation starting temperature of CIP@TiO<sub>2</sub> was about 400°C, whereas the uncoated CIP had an oxidation starting temperature of approximately 250°C. Moreover, the largest oxidation rate temperature of CIP@TiO<sub>2</sub> increased to around 550°C. This work opens up a novel strategy for the production of high-performance EMW absorbers via structural design.</p>\",\"PeriodicalId\":14030,\"journal\":{\"name\":\"International Journal of Minerals, Metallurgy, and Materials\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Minerals, Metallurgy, and Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s12613-023-2707-5\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Minerals, Metallurgy, and Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12613-023-2707-5","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Preparation of CIP@TiO2 composite with broadband electromagnetic wave absorption properties
Abstract
Scholars aim for the improved impedance matching (Z) of materials while maintaining their excellent wave absorption properties. Based on the hydrolysis characteristics of isopropyl titanate, a simple preparation process for the coating of carbonyl iron powder (CIP) with TiO2 was designed. Given the TiO2 coating, the Z of the CIP@TiO2 composite was adjusted well by decreasing the dielectric constant. Moreover, the interfacial polarization of CIP@TiO2 was enhanced. Ultimately, the electromagnetic-wave (EMW) absorption property of the CIP@TiO2 composite was improved substantially, the minimum reflection loss reached −46.07 dB, and the effective absorption bandwidth can reach 8 GHz at the composite thickness of 1.5 mm. Moreover, compared with CIP, the oxidation resistance of CIP@TiO2 showed remarkable improvement. The results revealed that the oxidation starting temperature of CIP@TiO2 was about 400°C, whereas the uncoated CIP had an oxidation starting temperature of approximately 250°C. Moreover, the largest oxidation rate temperature of CIP@TiO2 increased to around 550°C. This work opens up a novel strategy for the production of high-performance EMW absorbers via structural design.
期刊介绍:
International Journal of Minerals, Metallurgy and Materials (Formerly known as Journal of University of Science and Technology Beijing, Mineral, Metallurgy, Material) provides an international medium for the publication of theoretical and experimental studies related to the fields of Minerals, Metallurgy and Materials. Papers dealing with minerals processing, mining, mine safety, environmental pollution and protection of mines, process metallurgy, metallurgical physical chemistry, structure and physical properties of materials, corrosion and resistance of materials, are viewed as suitable for publication.