Yongchul Yoo, Xiang Zhang, Fei Wang, Xin Chen, Xing-Zhong Li, Michael Nastasi, Bai Cui
{"title":"用于核聚变应用的钨基 WTaVCr 难熔高熵合金的火花等离子烧结","authors":"Yongchul Yoo, Xiang Zhang, Fei Wang, Xin Chen, Xing-Zhong Li, Michael Nastasi, Bai Cui","doi":"10.1007/s12613-023-2711-9","DOIUrl":null,"url":null,"abstract":"<p>W-based WTaVCr refractory high entropy alloys (RHEA) may be novel and promising candidate materials for plasma facing components in the first wall and diverter in fusion reactors. This alloy has been developed by a powder metallurgy process combining mechanical alloying and spark plasma sintering (SPS). The SPSed samples contained two phases, in which the matrix is RHEA with a body-centered cubic structure, while the oxide phase was most likely Ta<sub>2</sub>VO<sub>6</sub> through a combined analysis of X-ray diffraction (XRD), energy-dispersive spectroscopy (EDS), and selected area electron diffraction (SAED). The higher oxygen affinity of Ta and V may explain the preferential formation of their oxide phases based on thermodynamic calculations. Electron backscatter diffraction (EBSD) revealed an average grain size of 6.2 μm. WTaVCr RHEA showed a peak compressive strength of 2997 MPa at room temperature and much higher micro- and nano-hardness than W and other W-based RHEAs in the literature. Their high Rockwell hardness can be retained to at least 1000°C.</p>","PeriodicalId":14030,"journal":{"name":"International Journal of Minerals, Metallurgy, and Materials","volume":"52 1","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spark plasma sintering of tungsten-based WTaVCr refractory high entropy alloys for nuclear fusion applications\",\"authors\":\"Yongchul Yoo, Xiang Zhang, Fei Wang, Xin Chen, Xing-Zhong Li, Michael Nastasi, Bai Cui\",\"doi\":\"10.1007/s12613-023-2711-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>W-based WTaVCr refractory high entropy alloys (RHEA) may be novel and promising candidate materials for plasma facing components in the first wall and diverter in fusion reactors. This alloy has been developed by a powder metallurgy process combining mechanical alloying and spark plasma sintering (SPS). The SPSed samples contained two phases, in which the matrix is RHEA with a body-centered cubic structure, while the oxide phase was most likely Ta<sub>2</sub>VO<sub>6</sub> through a combined analysis of X-ray diffraction (XRD), energy-dispersive spectroscopy (EDS), and selected area electron diffraction (SAED). The higher oxygen affinity of Ta and V may explain the preferential formation of their oxide phases based on thermodynamic calculations. Electron backscatter diffraction (EBSD) revealed an average grain size of 6.2 μm. WTaVCr RHEA showed a peak compressive strength of 2997 MPa at room temperature and much higher micro- and nano-hardness than W and other W-based RHEAs in the literature. Their high Rockwell hardness can be retained to at least 1000°C.</p>\",\"PeriodicalId\":14030,\"journal\":{\"name\":\"International Journal of Minerals, Metallurgy, and Materials\",\"volume\":\"52 1\",\"pages\":\"\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-01-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Minerals, Metallurgy, and Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s12613-023-2711-9\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Minerals, Metallurgy, and Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12613-023-2711-9","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
基于 WTaVCr 的 WTaVCr 难熔高熵合金 (RHEA) 可能是用于聚变反应堆第一壁和分流器等离子体面组件的新型、有前途的候选材料。这种合金是通过机械合金化和火花等离子烧结(SPS)相结合的粉末冶金工艺研制而成的。通过 X 射线衍射 (XRD)、能量色散光谱 (EDS) 和选区电子衍射 (SAED) 的综合分析,SPS 烧结样品包含两相,其中基体是具有体心立方结构的 RHEA,而氧化物相很可能是 Ta2VO6。根据热力学计算,Ta 和 V 的氧亲和力较高,这可能是它们的氧化物相优先形成的原因。电子反向散射衍射 (EBSD) 显示平均晶粒大小为 6.2 μm。WTaVCr RHEA 在室温下的峰值抗压强度为 2997 兆帕,其微观和纳米硬度远高于文献中的 W 和其他 W 基 RHEA。它们的高洛氏硬度至少可以保持到 1000°C。
Spark plasma sintering of tungsten-based WTaVCr refractory high entropy alloys for nuclear fusion applications
W-based WTaVCr refractory high entropy alloys (RHEA) may be novel and promising candidate materials for plasma facing components in the first wall and diverter in fusion reactors. This alloy has been developed by a powder metallurgy process combining mechanical alloying and spark plasma sintering (SPS). The SPSed samples contained two phases, in which the matrix is RHEA with a body-centered cubic structure, while the oxide phase was most likely Ta2VO6 through a combined analysis of X-ray diffraction (XRD), energy-dispersive spectroscopy (EDS), and selected area electron diffraction (SAED). The higher oxygen affinity of Ta and V may explain the preferential formation of their oxide phases based on thermodynamic calculations. Electron backscatter diffraction (EBSD) revealed an average grain size of 6.2 μm. WTaVCr RHEA showed a peak compressive strength of 2997 MPa at room temperature and much higher micro- and nano-hardness than W and other W-based RHEAs in the literature. Their high Rockwell hardness can be retained to at least 1000°C.
期刊介绍:
International Journal of Minerals, Metallurgy and Materials (Formerly known as Journal of University of Science and Technology Beijing, Mineral, Metallurgy, Material) provides an international medium for the publication of theoretical and experimental studies related to the fields of Minerals, Metallurgy and Materials. Papers dealing with minerals processing, mining, mine safety, environmental pollution and protection of mines, process metallurgy, metallurgical physical chemistry, structure and physical properties of materials, corrosion and resistance of materials, are viewed as suitable for publication.