在还原焙烧过程中对辉绿岩相变的精确调节

IF 5.6 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY International Journal of Minerals, Metallurgy, and Materials Pub Date : 2024-01-26 DOI:10.1007/s12613-023-2688-4
Ruofeng Wang, Peng Gao, Shuai Yuan, Yanjun Li, Yingzhi Liu, Cheng Huang
{"title":"在还原焙烧过程中对辉绿岩相变的精确调节","authors":"Ruofeng Wang, Peng Gao, Shuai Yuan, Yanjun Li, Yingzhi Liu, Cheng Huang","doi":"10.1007/s12613-023-2688-4","DOIUrl":null,"url":null,"abstract":"<p>The mechanism involved in the phase transformation process of pyrolusite (MnO<sub>2</sub>) during roasting in a reducing atmosphere was systematically elucidated in this study, with the aim of effectively using low-grade complex manganese ore resources. According to single-factor experiment results, the roasted product with a divalent manganese (Mn<sup>2+</sup>) distribution rate of 95.30% was obtained at a roasting time of 25 min, a roasting temperature of 700°C, a CO concentration of 20at%, and a total gas volume of 500 mL·min<sup>−1</sup>, in which the manganese was mainly in the form of manganosite (MnO). Scanning electron microscopy and Brunauer–Emmett–Teller theory demonstrated the microstructural evolution of the roasted product and the gradual reduction in the pyrolusite ore from the surface to the core. Thermodynamic calculations, X-ray photoelectron spectroscopy, and X-ray diffractometry analyses determined that the phase transformation of pyrolusite followed the order of MnO<sub>2</sub>→Mn<sub>2</sub>O<sub>3</sub>→Mn<sub>3</sub>O<sub>4</sub>→MnO phase by phase, and the reduction of manganese oxides in each valence state proceeded simultaneously.</p>","PeriodicalId":14030,"journal":{"name":"International Journal of Minerals, Metallurgy, and Materials","volume":"72 1","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Precise regulation of the phase transformation for pyrolusite during the reduction roasting process\",\"authors\":\"Ruofeng Wang, Peng Gao, Shuai Yuan, Yanjun Li, Yingzhi Liu, Cheng Huang\",\"doi\":\"10.1007/s12613-023-2688-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The mechanism involved in the phase transformation process of pyrolusite (MnO<sub>2</sub>) during roasting in a reducing atmosphere was systematically elucidated in this study, with the aim of effectively using low-grade complex manganese ore resources. According to single-factor experiment results, the roasted product with a divalent manganese (Mn<sup>2+</sup>) distribution rate of 95.30% was obtained at a roasting time of 25 min, a roasting temperature of 700°C, a CO concentration of 20at%, and a total gas volume of 500 mL·min<sup>−1</sup>, in which the manganese was mainly in the form of manganosite (MnO). Scanning electron microscopy and Brunauer–Emmett–Teller theory demonstrated the microstructural evolution of the roasted product and the gradual reduction in the pyrolusite ore from the surface to the core. Thermodynamic calculations, X-ray photoelectron spectroscopy, and X-ray diffractometry analyses determined that the phase transformation of pyrolusite followed the order of MnO<sub>2</sub>→Mn<sub>2</sub>O<sub>3</sub>→Mn<sub>3</sub>O<sub>4</sub>→MnO phase by phase, and the reduction of manganese oxides in each valence state proceeded simultaneously.</p>\",\"PeriodicalId\":14030,\"journal\":{\"name\":\"International Journal of Minerals, Metallurgy, and Materials\",\"volume\":\"72 1\",\"pages\":\"\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-01-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Minerals, Metallurgy, and Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s12613-023-2688-4\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Minerals, Metallurgy, and Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12613-023-2688-4","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

该研究系统地阐明了还原气氛中焙烧辉绿岩(MnO2)相变过程的机理,旨在有效利用低品位复合锰矿资源。单因素实验结果表明,在焙烧时间为 25 分钟、焙烧温度为 700℃、CO 浓度为 20%、总气量为 500 mL-min-1 的条件下,焙烧产物的二价锰(Mn2+)分布率为 95.30%,其中的锰主要以锰矿石(MnO)的形式存在。扫描电子显微镜和布鲁瑙尔-埃美特-泰勒理论证明了焙烧产物的微观结构演变,以及辉绿岩矿石从表面到核心的逐渐减少。热力学计算、X 射线光电子能谱和 X 射线衍射分析确定,辉绿岩的相变遵循 MnO2→Mn2O3→Mn3O4→MnO 的顺序逐相进行,各价态锰氧化物的还原同时进行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Precise regulation of the phase transformation for pyrolusite during the reduction roasting process

The mechanism involved in the phase transformation process of pyrolusite (MnO2) during roasting in a reducing atmosphere was systematically elucidated in this study, with the aim of effectively using low-grade complex manganese ore resources. According to single-factor experiment results, the roasted product with a divalent manganese (Mn2+) distribution rate of 95.30% was obtained at a roasting time of 25 min, a roasting temperature of 700°C, a CO concentration of 20at%, and a total gas volume of 500 mL·min−1, in which the manganese was mainly in the form of manganosite (MnO). Scanning electron microscopy and Brunauer–Emmett–Teller theory demonstrated the microstructural evolution of the roasted product and the gradual reduction in the pyrolusite ore from the surface to the core. Thermodynamic calculations, X-ray photoelectron spectroscopy, and X-ray diffractometry analyses determined that the phase transformation of pyrolusite followed the order of MnO2→Mn2O3→Mn3O4→MnO phase by phase, and the reduction of manganese oxides in each valence state proceeded simultaneously.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.30
自引率
16.70%
发文量
205
审稿时长
2 months
期刊介绍: International Journal of Minerals, Metallurgy and Materials (Formerly known as Journal of University of Science and Technology Beijing, Mineral, Metallurgy, Material) provides an international medium for the publication of theoretical and experimental studies related to the fields of Minerals, Metallurgy and Materials. Papers dealing with minerals processing, mining, mine safety, environmental pollution and protection of mines, process metallurgy, metallurgical physical chemistry, structure and physical properties of materials, corrosion and resistance of materials, are viewed as suitable for publication.
期刊最新文献
Alkyl dimethyl betaine activates the low-temperature collection capacity of sodium oleate for scheelite Preparation of sodium molybdate from molybdenum concentrate by microwave roasting and alkali leaching Metal-to-insulator transitions in 3d-band correlated oxides containing Fe compositions Dual-ion carrier storage through Mg2+ addition for high-energy and long-life zinc-ion hybrid capacitor High corrosion and wear resistant electroless Ni-P gradient coatings on aviation aluminum alloy parts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1