{"title":"在还原焙烧过程中对辉绿岩相变的精确调节","authors":"Ruofeng Wang, Peng Gao, Shuai Yuan, Yanjun Li, Yingzhi Liu, Cheng Huang","doi":"10.1007/s12613-023-2688-4","DOIUrl":null,"url":null,"abstract":"<p>The mechanism involved in the phase transformation process of pyrolusite (MnO<sub>2</sub>) during roasting in a reducing atmosphere was systematically elucidated in this study, with the aim of effectively using low-grade complex manganese ore resources. According to single-factor experiment results, the roasted product with a divalent manganese (Mn<sup>2+</sup>) distribution rate of 95.30% was obtained at a roasting time of 25 min, a roasting temperature of 700°C, a CO concentration of 20at%, and a total gas volume of 500 mL·min<sup>−1</sup>, in which the manganese was mainly in the form of manganosite (MnO). Scanning electron microscopy and Brunauer–Emmett–Teller theory demonstrated the microstructural evolution of the roasted product and the gradual reduction in the pyrolusite ore from the surface to the core. Thermodynamic calculations, X-ray photoelectron spectroscopy, and X-ray diffractometry analyses determined that the phase transformation of pyrolusite followed the order of MnO<sub>2</sub>→Mn<sub>2</sub>O<sub>3</sub>→Mn<sub>3</sub>O<sub>4</sub>→MnO phase by phase, and the reduction of manganese oxides in each valence state proceeded simultaneously.</p>","PeriodicalId":14030,"journal":{"name":"International Journal of Minerals, Metallurgy, and Materials","volume":"72 1","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Precise regulation of the phase transformation for pyrolusite during the reduction roasting process\",\"authors\":\"Ruofeng Wang, Peng Gao, Shuai Yuan, Yanjun Li, Yingzhi Liu, Cheng Huang\",\"doi\":\"10.1007/s12613-023-2688-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The mechanism involved in the phase transformation process of pyrolusite (MnO<sub>2</sub>) during roasting in a reducing atmosphere was systematically elucidated in this study, with the aim of effectively using low-grade complex manganese ore resources. According to single-factor experiment results, the roasted product with a divalent manganese (Mn<sup>2+</sup>) distribution rate of 95.30% was obtained at a roasting time of 25 min, a roasting temperature of 700°C, a CO concentration of 20at%, and a total gas volume of 500 mL·min<sup>−1</sup>, in which the manganese was mainly in the form of manganosite (MnO). Scanning electron microscopy and Brunauer–Emmett–Teller theory demonstrated the microstructural evolution of the roasted product and the gradual reduction in the pyrolusite ore from the surface to the core. Thermodynamic calculations, X-ray photoelectron spectroscopy, and X-ray diffractometry analyses determined that the phase transformation of pyrolusite followed the order of MnO<sub>2</sub>→Mn<sub>2</sub>O<sub>3</sub>→Mn<sub>3</sub>O<sub>4</sub>→MnO phase by phase, and the reduction of manganese oxides in each valence state proceeded simultaneously.</p>\",\"PeriodicalId\":14030,\"journal\":{\"name\":\"International Journal of Minerals, Metallurgy, and Materials\",\"volume\":\"72 1\",\"pages\":\"\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-01-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Minerals, Metallurgy, and Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s12613-023-2688-4\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Minerals, Metallurgy, and Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12613-023-2688-4","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Precise regulation of the phase transformation for pyrolusite during the reduction roasting process
The mechanism involved in the phase transformation process of pyrolusite (MnO2) during roasting in a reducing atmosphere was systematically elucidated in this study, with the aim of effectively using low-grade complex manganese ore resources. According to single-factor experiment results, the roasted product with a divalent manganese (Mn2+) distribution rate of 95.30% was obtained at a roasting time of 25 min, a roasting temperature of 700°C, a CO concentration of 20at%, and a total gas volume of 500 mL·min−1, in which the manganese was mainly in the form of manganosite (MnO). Scanning electron microscopy and Brunauer–Emmett–Teller theory demonstrated the microstructural evolution of the roasted product and the gradual reduction in the pyrolusite ore from the surface to the core. Thermodynamic calculations, X-ray photoelectron spectroscopy, and X-ray diffractometry analyses determined that the phase transformation of pyrolusite followed the order of MnO2→Mn2O3→Mn3O4→MnO phase by phase, and the reduction of manganese oxides in each valence state proceeded simultaneously.
期刊介绍:
International Journal of Minerals, Metallurgy and Materials (Formerly known as Journal of University of Science and Technology Beijing, Mineral, Metallurgy, Material) provides an international medium for the publication of theoretical and experimental studies related to the fields of Minerals, Metallurgy and Materials. Papers dealing with minerals processing, mining, mine safety, environmental pollution and protection of mines, process metallurgy, metallurgical physical chemistry, structure and physical properties of materials, corrosion and resistance of materials, are viewed as suitable for publication.