对建议公平性的反事实解释

IF 5.4 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS ACM Transactions on Information Systems Pub Date : 2024-01-29 DOI:10.1145/3643670
Xiangmeng Wang, Qian Li, Dianer Yu, Qing Li, Guandong Xu
{"title":"对建议公平性的反事实解释","authors":"Xiangmeng Wang, Qian Li, Dianer Yu, Qing Li, Guandong Xu","doi":"10.1145/3643670","DOIUrl":null,"url":null,"abstract":"<p>Fairness-aware recommendation alleviates discrimination issues to build trustworthy recommendation systems. Explaining the causes of unfair recommendations is critical, as it promotes fairness diagnostics, and thus secures users’ trust in recommendation models. Existing fairness explanation methods suffer high computation burdens due to the large-scale search space and the greedy nature of the explanation search process. Besides, they perform feature-level optimizations with continuous values, which are not applicable to discrete attributes such as gender and age. In this work, we adopt counterfactual explanations from causal inference and propose to generate attribute-level counterfactual explanations, adapting to discrete attributes in recommendation models. We use real-world attributes from Heterogeneous Information Networks (HINs) to empower counterfactual reasoning on discrete attributes. We propose a <i>Counterfactual Explanation for Fairness (CFairER)</i> that generates attribute-level counterfactual explanations from HINs for item exposure fairness. Our <i>CFairER</i> conducts off-policy reinforcement learning to seek high-quality counterfactual explanations, with attentive action pruning reducing the search space of candidate counterfactuals. The counterfactual explanations help to provide rational and proximate explanations for model fairness, while the attentive action pruning narrows the search space of attributes. Extensive experiments demonstrate our proposed model can generate faithful explanations while maintaining favorable recommendation performance.</p>","PeriodicalId":50936,"journal":{"name":"ACM Transactions on Information Systems","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Counterfactual Explanation for Fairness in Recommendation\",\"authors\":\"Xiangmeng Wang, Qian Li, Dianer Yu, Qing Li, Guandong Xu\",\"doi\":\"10.1145/3643670\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Fairness-aware recommendation alleviates discrimination issues to build trustworthy recommendation systems. Explaining the causes of unfair recommendations is critical, as it promotes fairness diagnostics, and thus secures users’ trust in recommendation models. Existing fairness explanation methods suffer high computation burdens due to the large-scale search space and the greedy nature of the explanation search process. Besides, they perform feature-level optimizations with continuous values, which are not applicable to discrete attributes such as gender and age. In this work, we adopt counterfactual explanations from causal inference and propose to generate attribute-level counterfactual explanations, adapting to discrete attributes in recommendation models. We use real-world attributes from Heterogeneous Information Networks (HINs) to empower counterfactual reasoning on discrete attributes. We propose a <i>Counterfactual Explanation for Fairness (CFairER)</i> that generates attribute-level counterfactual explanations from HINs for item exposure fairness. Our <i>CFairER</i> conducts off-policy reinforcement learning to seek high-quality counterfactual explanations, with attentive action pruning reducing the search space of candidate counterfactuals. The counterfactual explanations help to provide rational and proximate explanations for model fairness, while the attentive action pruning narrows the search space of attributes. Extensive experiments demonstrate our proposed model can generate faithful explanations while maintaining favorable recommendation performance.</p>\",\"PeriodicalId\":50936,\"journal\":{\"name\":\"ACM Transactions on Information Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Information Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3643670\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Information Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3643670","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

公平感知推荐可以缓解歧视问题,从而建立值得信赖的推荐系统。解释不公平推荐的原因至关重要,因为它能促进公平性诊断,从而确保用户对推荐模型的信任。由于大规模搜索空间和解释搜索过程的贪婪性,现有的公平性解释方法承受着很高的计算负担。此外,这些方法对连续值进行特征级优化,不适用于性别和年龄等离散属性。在这项工作中,我们采用了因果推理中的反事实解释,并建议生成属性级的反事实解释,以适应推荐模型中的离散属性。我们使用来自异构信息网络(HINs)的真实世界属性来增强离散属性的反事实推理能力。我们提出了一种公平性反事实解释(CFairER),它能从异构信息网络中生成属性级的反事实解释,以保证项目曝光的公平性。我们的 CFairER 通过非政策强化学习来寻求高质量的反事实解释,并通过细心的行动剪枝来减少候选反事实的搜索空间。反事实解释有助于为模型公平性提供合理和近似的解释,而殷勤的行动修剪则缩小了属性的搜索空间。广泛的实验证明,我们提出的模型可以生成忠实的解释,同时保持良好的推荐性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Counterfactual Explanation for Fairness in Recommendation

Fairness-aware recommendation alleviates discrimination issues to build trustworthy recommendation systems. Explaining the causes of unfair recommendations is critical, as it promotes fairness diagnostics, and thus secures users’ trust in recommendation models. Existing fairness explanation methods suffer high computation burdens due to the large-scale search space and the greedy nature of the explanation search process. Besides, they perform feature-level optimizations with continuous values, which are not applicable to discrete attributes such as gender and age. In this work, we adopt counterfactual explanations from causal inference and propose to generate attribute-level counterfactual explanations, adapting to discrete attributes in recommendation models. We use real-world attributes from Heterogeneous Information Networks (HINs) to empower counterfactual reasoning on discrete attributes. We propose a Counterfactual Explanation for Fairness (CFairER) that generates attribute-level counterfactual explanations from HINs for item exposure fairness. Our CFairER conducts off-policy reinforcement learning to seek high-quality counterfactual explanations, with attentive action pruning reducing the search space of candidate counterfactuals. The counterfactual explanations help to provide rational and proximate explanations for model fairness, while the attentive action pruning narrows the search space of attributes. Extensive experiments demonstrate our proposed model can generate faithful explanations while maintaining favorable recommendation performance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Transactions on Information Systems
ACM Transactions on Information Systems 工程技术-计算机:信息系统
CiteScore
9.40
自引率
14.30%
发文量
165
审稿时长
>12 weeks
期刊介绍: The ACM Transactions on Information Systems (TOIS) publishes papers on information retrieval (such as search engines, recommender systems) that contain: new principled information retrieval models or algorithms with sound empirical validation; observational, experimental and/or theoretical studies yielding new insights into information retrieval or information seeking; accounts of applications of existing information retrieval techniques that shed light on the strengths and weaknesses of the techniques; formalization of new information retrieval or information seeking tasks and of methods for evaluating the performance on those tasks; development of content (text, image, speech, video, etc) analysis methods to support information retrieval and information seeking; development of computational models of user information preferences and interaction behaviors; creation and analysis of evaluation methodologies for information retrieval and information seeking; or surveys of existing work that propose a significant synthesis. The information retrieval scope of ACM Transactions on Information Systems (TOIS) appeals to industry practitioners for its wealth of creative ideas, and to academic researchers for its descriptions of their colleagues'' work.
期刊最新文献
AdaGIN: Adaptive Graph Interaction Network for Click-Through Rate Prediction A Self-Distilled Learning to Rank Model for Ad-hoc Retrieval RevGNN: Negative Sampling Enhanced Contrastive Graph Learning for Academic Reviewer Recommendation Dual Contrastive Learning for Cross-domain Named Entity Recognition A Knowledge Graph Embedding Model for Answering Factoid Entity Questions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1