{"title":"从等效点源概念出发的新西兰地壳、界面和板块地震骨干地动模型","authors":"Gail M. Atkinson","doi":"10.1785/0120230144","DOIUrl":null,"url":null,"abstract":"A ground‐motion model (GMM) that strikes a balance between empirical and simulation‐based approaches is developed in support of the 2022 update of the New Zealand National Seismic Hazard Model. The development follows the backbone approach, comprising a central model to express the median ground motions for earthquakes in New Zealand (NZ), along with upper and lower alternatives to describe its epistemic uncertainty. Aleatory variability of ground‐motion amplitudes about the median is also characterized. Separate GMMs are developed for crustal, interface, and in‐slab earthquakes. The approach taken is to perform a regression analysis of the NZ response spectra database employing a functional form, concepts, and constraints that are drawn from equivalent point‐source simulations. The model parameters that control the scaling of the GMM with magnitude and distance describe source effects (seismic moment and stress parameter), path effects (geometric and anelastic attenuation), and site effects (site shear‐wave velocity). The NZ database provides constraints on the model for M ∼ 4–7, for frequencies from 0.2 to 100 Hz, at distances to ∼400 km. Extension of the GMM to larger magnitudes (M 7–9) is constrained by the Hassani and Atkinson seismological model, which was developed for application to events of M 3–9 and validated in data‐rich regions (California for crustal earthquakes, Japan for interface and slab earthquakes).","PeriodicalId":9444,"journal":{"name":"Bulletin of the Seismological Society of America","volume":"185 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Backbone Ground‐Motion Models for Crustal, Interface, and Slab Earthquakes in New Zealand from Equivalent Point‐Source Concepts\",\"authors\":\"Gail M. Atkinson\",\"doi\":\"10.1785/0120230144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A ground‐motion model (GMM) that strikes a balance between empirical and simulation‐based approaches is developed in support of the 2022 update of the New Zealand National Seismic Hazard Model. The development follows the backbone approach, comprising a central model to express the median ground motions for earthquakes in New Zealand (NZ), along with upper and lower alternatives to describe its epistemic uncertainty. Aleatory variability of ground‐motion amplitudes about the median is also characterized. Separate GMMs are developed for crustal, interface, and in‐slab earthquakes. The approach taken is to perform a regression analysis of the NZ response spectra database employing a functional form, concepts, and constraints that are drawn from equivalent point‐source simulations. The model parameters that control the scaling of the GMM with magnitude and distance describe source effects (seismic moment and stress parameter), path effects (geometric and anelastic attenuation), and site effects (site shear‐wave velocity). The NZ database provides constraints on the model for M ∼ 4–7, for frequencies from 0.2 to 100 Hz, at distances to ∼400 km. Extension of the GMM to larger magnitudes (M 7–9) is constrained by the Hassani and Atkinson seismological model, which was developed for application to events of M 3–9 and validated in data‐rich regions (California for crustal earthquakes, Japan for interface and slab earthquakes).\",\"PeriodicalId\":9444,\"journal\":{\"name\":\"Bulletin of the Seismological Society of America\",\"volume\":\"185 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Seismological Society of America\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1785/0120230144\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Seismological Society of America","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1785/0120230144","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Backbone Ground‐Motion Models for Crustal, Interface, and Slab Earthquakes in New Zealand from Equivalent Point‐Source Concepts
A ground‐motion model (GMM) that strikes a balance between empirical and simulation‐based approaches is developed in support of the 2022 update of the New Zealand National Seismic Hazard Model. The development follows the backbone approach, comprising a central model to express the median ground motions for earthquakes in New Zealand (NZ), along with upper and lower alternatives to describe its epistemic uncertainty. Aleatory variability of ground‐motion amplitudes about the median is also characterized. Separate GMMs are developed for crustal, interface, and in‐slab earthquakes. The approach taken is to perform a regression analysis of the NZ response spectra database employing a functional form, concepts, and constraints that are drawn from equivalent point‐source simulations. The model parameters that control the scaling of the GMM with magnitude and distance describe source effects (seismic moment and stress parameter), path effects (geometric and anelastic attenuation), and site effects (site shear‐wave velocity). The NZ database provides constraints on the model for M ∼ 4–7, for frequencies from 0.2 to 100 Hz, at distances to ∼400 km. Extension of the GMM to larger magnitudes (M 7–9) is constrained by the Hassani and Atkinson seismological model, which was developed for application to events of M 3–9 and validated in data‐rich regions (California for crustal earthquakes, Japan for interface and slab earthquakes).
期刊介绍:
The Bulletin of the Seismological Society of America, commonly referred to as BSSA, (ISSN 0037-1106) is the premier journal of advanced research in earthquake seismology and related disciplines. It first appeared in 1911 and became a bimonthly in 1963. Each issue is composed of scientific papers on the various aspects of seismology, including investigation of specific earthquakes, theoretical and observational studies of seismic waves, inverse methods for determining the structure of the Earth or the dynamics of the earthquake source, seismometry, earthquake hazard and risk estimation, seismotectonics, and earthquake engineering. Special issues focus on important earthquakes or rapidly changing topics in seismology. BSSA is published by the Seismological Society of America.