{"title":"学生在运动中的数学思维","authors":"Robyn Gandell","doi":"10.1007/s40753-023-00233-z","DOIUrl":null,"url":null,"abstract":"<p>Mathematics education research is increasingly focused on how students’ movement interacts with their cognition. Although usually characterized as embodiment research, movement research often theorizes the body in diverse ways. Ingold (<i>Making: Anthropology, archaeology, art and architecture</i>, 2013) proposes that thinking and knowing emerge from the entwined, dynamic flows of human and non-human materials in a process called making and, following Sheets-Johnstone (<i>The primacy of movement</i> (Vol. 82), 2011), contends that humans think in movement. The study that this paper draws on employs Ingold’s making to study students’ movement during mathematical problem solving. In this paper I also recruit Laban’s movement elements (Laban & Ullmann, 1966/2011) as a framework to describe and analyse how the body moves in space and time and to incorporate the often-forgotten dynamic qualities of movement. This paper investigates the movement of a small group of tertiary students as they engage with a mathematical prompt (a task in Abstract Algebra), using thick description, to answer the questions: (1) How do students think mathematically in movement? (2) How do Laban’s elements help inform research into students’ movement? Through the lens of Laban’s movement elements, my analysis demonstrates that students think mathematically in movement. These findings suggest that mathematics educators may be overlooking valuable instances of students’ mathematical thinking and knowing: the thinking and knowing in movement which may not be available through verbalizations or artefacts. Although thinking in movement does not fit a traditional conceptualization of undergraduate mathematics, which privileges written communication heavily reliant on notation, to understand students’ mathematical cognition more comprehensively, mathematics educators need to reconsider and appreciate students’ mathematical thinking in movement.</p>","PeriodicalId":42532,"journal":{"name":"International Journal of Research in Undergraduate Mathematics Education","volume":"17 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Students’ Mathematical Thinking in Movement\",\"authors\":\"Robyn Gandell\",\"doi\":\"10.1007/s40753-023-00233-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Mathematics education research is increasingly focused on how students’ movement interacts with their cognition. Although usually characterized as embodiment research, movement research often theorizes the body in diverse ways. Ingold (<i>Making: Anthropology, archaeology, art and architecture</i>, 2013) proposes that thinking and knowing emerge from the entwined, dynamic flows of human and non-human materials in a process called making and, following Sheets-Johnstone (<i>The primacy of movement</i> (Vol. 82), 2011), contends that humans think in movement. The study that this paper draws on employs Ingold’s making to study students’ movement during mathematical problem solving. In this paper I also recruit Laban’s movement elements (Laban & Ullmann, 1966/2011) as a framework to describe and analyse how the body moves in space and time and to incorporate the often-forgotten dynamic qualities of movement. This paper investigates the movement of a small group of tertiary students as they engage with a mathematical prompt (a task in Abstract Algebra), using thick description, to answer the questions: (1) How do students think mathematically in movement? (2) How do Laban’s elements help inform research into students’ movement? Through the lens of Laban’s movement elements, my analysis demonstrates that students think mathematically in movement. These findings suggest that mathematics educators may be overlooking valuable instances of students’ mathematical thinking and knowing: the thinking and knowing in movement which may not be available through verbalizations or artefacts. Although thinking in movement does not fit a traditional conceptualization of undergraduate mathematics, which privileges written communication heavily reliant on notation, to understand students’ mathematical cognition more comprehensively, mathematics educators need to reconsider and appreciate students’ mathematical thinking in movement.</p>\",\"PeriodicalId\":42532,\"journal\":{\"name\":\"International Journal of Research in Undergraduate Mathematics Education\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Research in Undergraduate Mathematics Education\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s40753-023-00233-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"EDUCATION & EDUCATIONAL RESEARCH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Research in Undergraduate Mathematics Education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40753-023-00233-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
Mathematics education research is increasingly focused on how students’ movement interacts with their cognition. Although usually characterized as embodiment research, movement research often theorizes the body in diverse ways. Ingold (Making: Anthropology, archaeology, art and architecture, 2013) proposes that thinking and knowing emerge from the entwined, dynamic flows of human and non-human materials in a process called making and, following Sheets-Johnstone (The primacy of movement (Vol. 82), 2011), contends that humans think in movement. The study that this paper draws on employs Ingold’s making to study students’ movement during mathematical problem solving. In this paper I also recruit Laban’s movement elements (Laban & Ullmann, 1966/2011) as a framework to describe and analyse how the body moves in space and time and to incorporate the often-forgotten dynamic qualities of movement. This paper investigates the movement of a small group of tertiary students as they engage with a mathematical prompt (a task in Abstract Algebra), using thick description, to answer the questions: (1) How do students think mathematically in movement? (2) How do Laban’s elements help inform research into students’ movement? Through the lens of Laban’s movement elements, my analysis demonstrates that students think mathematically in movement. These findings suggest that mathematics educators may be overlooking valuable instances of students’ mathematical thinking and knowing: the thinking and knowing in movement which may not be available through verbalizations or artefacts. Although thinking in movement does not fit a traditional conceptualization of undergraduate mathematics, which privileges written communication heavily reliant on notation, to understand students’ mathematical cognition more comprehensively, mathematics educators need to reconsider and appreciate students’ mathematical thinking in movement.
期刊介绍:
The International Journal of Research in Undergraduate Mathematics Education is dedicated to the interests of post secondary mathematics learning and teaching. It welcomes original research, including empirical, theoretical, and methodological reports of learning and teaching of undergraduate and graduate students.The journal contains insights on mathematics education from introductory courses such as calculus to higher level courses such as linear algebra, all the way through advanced courses in analysis and abstract algebra. It is also a venue for research that focuses on graduate level mathematics teaching and learning as well as research that examines how mathematicians go about their professional practice. In addition, the journal is an outlet for the publication of mathematics education research conducted in other tertiary settings, such as technical and community colleges. It provides the intellectual foundation for improving university mathematics teaching and learning and it will address specific problems in the secondary-tertiary transition. The journal contains original research reports in post-secondary mathematics. Empirical reports must be theoretically and methodologically rigorous. Manuscripts describing theoretical and methodological advances are also welcome.