基于平滑粒子流体力学和有限元法耦合的落石冲击下缓冲层加固混凝土板的动态响应研究

IF 3.6 4区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Reviews on Advanced Materials Science Pub Date : 2024-01-27 DOI:10.1515/rams-2023-0176
Xuefeng Mei, Jianli Wu, Teng Wang, Ting Wang, Xiaofei Liang, Yanping Wang, Bangxiang Li, Tian Su, Lina Xu
{"title":"基于平滑粒子流体力学和有限元法耦合的落石冲击下缓冲层加固混凝土板的动态响应研究","authors":"Xuefeng Mei, Jianli Wu, Teng Wang, Ting Wang, Xiaofei Liang, Yanping Wang, Bangxiang Li, Tian Su, Lina Xu","doi":"10.1515/rams-2023-0176","DOIUrl":null,"url":null,"abstract":"In the rockfall prevention and control project, the reinforced concrete (RC) slab and sand (gravel soil) soil cushion layer are commonly used to form the protection structure, thereby resisting the rockfall impact. Considering that the oversized deformation of the cushion layer under impact load using the finite element simulation cannot converge, this article establishes a numerical calculation model using smoothed particle hydrodynamics–finite-element method coupling (SPH–FEM). First, the standard Lagrange finite-element mesh is established for the whole model using ABAQUS, and then the finite-element mesh of the soil cushion layer is converted to SPH particle at the initial moment of the calculation, and finally the calculation results are solved and outputted. The results indicate that, compared with the results of the outdoor rockfall impact test, the relative errors of the rockfall impact force and the displacement of the RC slab are within 10%, which proves the rationality of the coupling algorithm; moreover, in terms of the numerical simulation, the SPH–FEM coupling algorithm is more practical than the finite element for reproducing the mobility of the rockfall impacting the sand and soil particles. In addition, at an impact speed of less than 12 m·s<jats:sup>−1</jats:sup>, the cushion layer is able to absorb more than 85% of the impact energy, which effectively ensures that the RC slab is in an elastic working state under small impact energy and does not undergo destructive damage under large impact energy; the peak impact force of the rockfall is approximately linear with the velocity, and the simulated value of the peak impact force is basically the same as that of the theoretical value of Hertz theory; the numerical simulation is good for reproducing the damage process of the RC slab in accordance with the actual situation. The SPH–FEM coupling algorithm is more justified than the FEM in simulating the large deformation problem, and it can provide a new calculation method for the design and calculation of the rockfall protection structure.","PeriodicalId":54484,"journal":{"name":"Reviews on Advanced Materials Science","volume":"24 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on dynamic response of cushion layer-reinforced concrete slab under rockfall impact based on smoothed particle hydrodynamics and finite-element method coupling\",\"authors\":\"Xuefeng Mei, Jianli Wu, Teng Wang, Ting Wang, Xiaofei Liang, Yanping Wang, Bangxiang Li, Tian Su, Lina Xu\",\"doi\":\"10.1515/rams-2023-0176\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the rockfall prevention and control project, the reinforced concrete (RC) slab and sand (gravel soil) soil cushion layer are commonly used to form the protection structure, thereby resisting the rockfall impact. Considering that the oversized deformation of the cushion layer under impact load using the finite element simulation cannot converge, this article establishes a numerical calculation model using smoothed particle hydrodynamics–finite-element method coupling (SPH–FEM). First, the standard Lagrange finite-element mesh is established for the whole model using ABAQUS, and then the finite-element mesh of the soil cushion layer is converted to SPH particle at the initial moment of the calculation, and finally the calculation results are solved and outputted. The results indicate that, compared with the results of the outdoor rockfall impact test, the relative errors of the rockfall impact force and the displacement of the RC slab are within 10%, which proves the rationality of the coupling algorithm; moreover, in terms of the numerical simulation, the SPH–FEM coupling algorithm is more practical than the finite element for reproducing the mobility of the rockfall impacting the sand and soil particles. In addition, at an impact speed of less than 12 m·s<jats:sup>−1</jats:sup>, the cushion layer is able to absorb more than 85% of the impact energy, which effectively ensures that the RC slab is in an elastic working state under small impact energy and does not undergo destructive damage under large impact energy; the peak impact force of the rockfall is approximately linear with the velocity, and the simulated value of the peak impact force is basically the same as that of the theoretical value of Hertz theory; the numerical simulation is good for reproducing the damage process of the RC slab in accordance with the actual situation. The SPH–FEM coupling algorithm is more justified than the FEM in simulating the large deformation problem, and it can provide a new calculation method for the design and calculation of the rockfall protection structure.\",\"PeriodicalId\":54484,\"journal\":{\"name\":\"Reviews on Advanced Materials Science\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reviews on Advanced Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1515/rams-2023-0176\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews on Advanced Materials Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1515/rams-2023-0176","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在落石防治工程中,通常采用钢筋混凝土(RC)板和砂(砾石土)土垫层组成防护结构,从而抵御落石冲击。考虑到有限元模拟无法收敛缓冲层在冲击荷载作用下的超大变形,本文建立了平滑粒子流体力学-有限元法耦合(SPH-FEM)数值计算模型。首先利用 ABAQUS 为整个模型建立标准拉格朗日有限元网格,然后在计算初始时刻将土垫层的有限元网格转换为 SPH 粒子网格,最后求解并输出计算结果。结果表明,与室外落石冲击试验结果相比,落石冲击力和 RC 板位移的相对误差均在 10%以内,证明了耦合算法的合理性;而且,在数值模拟方面,SPH-FEM 耦合算法比有限元更能真实再现落石冲击砂土颗粒的流动性。此外,在冲击速度小于 12 m-s-1 时,缓冲层能够吸收 85% 以上的冲击能量,有效保证了 RC 板在小冲击能量下处于弹性工作状态,在大冲击能量下不会发生破坏性损伤;落石的冲击力峰值与速度近似成线性关系,冲击力峰值的模拟值与赫兹理论的理论值基本一致;数值模拟能够很好地再现 RC 板的损伤过程,符合实际情况。SPH-FEM耦合算法在模拟大变形问题上比有限元更加合理,可为落石防护结构的设计计算提供一种新的计算方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Study on dynamic response of cushion layer-reinforced concrete slab under rockfall impact based on smoothed particle hydrodynamics and finite-element method coupling
In the rockfall prevention and control project, the reinforced concrete (RC) slab and sand (gravel soil) soil cushion layer are commonly used to form the protection structure, thereby resisting the rockfall impact. Considering that the oversized deformation of the cushion layer under impact load using the finite element simulation cannot converge, this article establishes a numerical calculation model using smoothed particle hydrodynamics–finite-element method coupling (SPH–FEM). First, the standard Lagrange finite-element mesh is established for the whole model using ABAQUS, and then the finite-element mesh of the soil cushion layer is converted to SPH particle at the initial moment of the calculation, and finally the calculation results are solved and outputted. The results indicate that, compared with the results of the outdoor rockfall impact test, the relative errors of the rockfall impact force and the displacement of the RC slab are within 10%, which proves the rationality of the coupling algorithm; moreover, in terms of the numerical simulation, the SPH–FEM coupling algorithm is more practical than the finite element for reproducing the mobility of the rockfall impacting the sand and soil particles. In addition, at an impact speed of less than 12 m·s−1, the cushion layer is able to absorb more than 85% of the impact energy, which effectively ensures that the RC slab is in an elastic working state under small impact energy and does not undergo destructive damage under large impact energy; the peak impact force of the rockfall is approximately linear with the velocity, and the simulated value of the peak impact force is basically the same as that of the theoretical value of Hertz theory; the numerical simulation is good for reproducing the damage process of the RC slab in accordance with the actual situation. The SPH–FEM coupling algorithm is more justified than the FEM in simulating the large deformation problem, and it can provide a new calculation method for the design and calculation of the rockfall protection structure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Reviews on Advanced Materials Science
Reviews on Advanced Materials Science 工程技术-材料科学:综合
CiteScore
5.10
自引率
11.10%
发文量
43
审稿时长
3.5 months
期刊介绍: Reviews on Advanced Materials Science is a fully peer-reviewed, open access, electronic journal that publishes significant, original and relevant works in the area of theoretical and experimental studies of advanced materials. The journal provides the readers with free, instant, and permanent access to all content worldwide; and the authors with extensive promotion of published articles, long-time preservation, language-correction services, no space constraints and immediate publication. Reviews on Advanced Materials Science is listed inter alia by Clarivate Analytics (formerly Thomson Reuters) - Current Contents/Physical, Chemical, and Earth Sciences (CC/PC&ES), JCR and SCIE. Our standard policy requires each paper to be reviewed by at least two Referees and the peer-review process is single-blind.
期刊最新文献
Toward sustainability: Integrating experimental study and data-driven modeling for eco-friendly paver blocks containing plastic waste A sawtooth constitutive model describing strain hardening and multiple cracking of ECC under uniaxial tension Predicting mechanical properties of sustainable green concrete using novel machine learning: Stacking and gene expression programming Producing sustainable binding materials using marble waste blended with fly ash and rice husk ash for building materials Parameter optimization for ultrasonic-assisted grinding of γ-TiAl intermetallics: A gray relational analysis approach with surface integrity evaluation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1