Rafael Cisneros-Limón, Antonin Dallard, Mehdi Benallegue, Kenji Kaneko, Hiroshi Kaminaga, Pierre Gergondet, Arnaud Tanguy, Rohan Pratap Singh, Leyuan Sun, Yang Chen, Carole Fournier, Guillaume Lorthioir, Masato Tsuru, Sélim Chefchaouni-Moussaoui, Yukiko Osawa, Guillaume Caron, Kevin Chappellet, Mitsuharu Morisawa, Adrien Escande, Ko Ayusawa, Younes Houhou, Iori Kumagai, Michio Ono, Koji Shirasaka, Shiryu Wada, Hiroshi Wada, Fumio Kanehiro, Abderrahmane Kheddar
{"title":"体现人类远程呈现的网络虚拟化系统,用于连接、探索和技能传授","authors":"Rafael Cisneros-Limón, Antonin Dallard, Mehdi Benallegue, Kenji Kaneko, Hiroshi Kaminaga, Pierre Gergondet, Arnaud Tanguy, Rohan Pratap Singh, Leyuan Sun, Yang Chen, Carole Fournier, Guillaume Lorthioir, Masato Tsuru, Sélim Chefchaouni-Moussaoui, Yukiko Osawa, Guillaume Caron, Kevin Chappellet, Mitsuharu Morisawa, Adrien Escande, Ko Ayusawa, Younes Houhou, Iori Kumagai, Michio Ono, Koji Shirasaka, Shiryu Wada, Hiroshi Wada, Fumio Kanehiro, Abderrahmane Kheddar","doi":"10.1007/s12369-023-01096-9","DOIUrl":null,"url":null,"abstract":"<p>This paper describes the cybernetic avatar system developed by Team JANUS for connectivity, exploration, and skill transfer: the core domains targeted by the ANA Avatar XPRIZE competition, for which Team JANUS was a finalist. We used as an avatar a humanoid robot with a human-like appearance and shape that is capable of reproducing facial expressions and walking, and built an avatar control system that allowed the operator to control the avatar through equivalent mechanisms of motion; that is, by replicating the upper-body movement with naturalness and by stepping to command locomotion. In this way, we aimed to achieve high-fidelity telepresence and managed to be well evaluated from the point of view of the operator during the competition. We introduce our solutions to the integration challenges and present experimental results to asses our avatar system, together with current limitations and how we are planning to mitigate them in future work.</p>","PeriodicalId":14361,"journal":{"name":"International Journal of Social Robotics","volume":"8 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Cybernetic Avatar System to Embody Human Telepresence for Connectivity, Exploration, and Skill Transfer\",\"authors\":\"Rafael Cisneros-Limón, Antonin Dallard, Mehdi Benallegue, Kenji Kaneko, Hiroshi Kaminaga, Pierre Gergondet, Arnaud Tanguy, Rohan Pratap Singh, Leyuan Sun, Yang Chen, Carole Fournier, Guillaume Lorthioir, Masato Tsuru, Sélim Chefchaouni-Moussaoui, Yukiko Osawa, Guillaume Caron, Kevin Chappellet, Mitsuharu Morisawa, Adrien Escande, Ko Ayusawa, Younes Houhou, Iori Kumagai, Michio Ono, Koji Shirasaka, Shiryu Wada, Hiroshi Wada, Fumio Kanehiro, Abderrahmane Kheddar\",\"doi\":\"10.1007/s12369-023-01096-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper describes the cybernetic avatar system developed by Team JANUS for connectivity, exploration, and skill transfer: the core domains targeted by the ANA Avatar XPRIZE competition, for which Team JANUS was a finalist. We used as an avatar a humanoid robot with a human-like appearance and shape that is capable of reproducing facial expressions and walking, and built an avatar control system that allowed the operator to control the avatar through equivalent mechanisms of motion; that is, by replicating the upper-body movement with naturalness and by stepping to command locomotion. In this way, we aimed to achieve high-fidelity telepresence and managed to be well evaluated from the point of view of the operator during the competition. We introduce our solutions to the integration challenges and present experimental results to asses our avatar system, together with current limitations and how we are planning to mitigate them in future work.</p>\",\"PeriodicalId\":14361,\"journal\":{\"name\":\"International Journal of Social Robotics\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Social Robotics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s12369-023-01096-9\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Social Robotics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s12369-023-01096-9","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
A Cybernetic Avatar System to Embody Human Telepresence for Connectivity, Exploration, and Skill Transfer
This paper describes the cybernetic avatar system developed by Team JANUS for connectivity, exploration, and skill transfer: the core domains targeted by the ANA Avatar XPRIZE competition, for which Team JANUS was a finalist. We used as an avatar a humanoid robot with a human-like appearance and shape that is capable of reproducing facial expressions and walking, and built an avatar control system that allowed the operator to control the avatar through equivalent mechanisms of motion; that is, by replicating the upper-body movement with naturalness and by stepping to command locomotion. In this way, we aimed to achieve high-fidelity telepresence and managed to be well evaluated from the point of view of the operator during the competition. We introduce our solutions to the integration challenges and present experimental results to asses our avatar system, together with current limitations and how we are planning to mitigate them in future work.
期刊介绍:
Social Robotics is the study of robots that are able to interact and communicate among themselves, with humans, and with the environment, within the social and cultural structure attached to its role. The journal covers a broad spectrum of topics related to the latest technologies, new research results and developments in the area of social robotics on all levels, from developments in core enabling technologies to system integration, aesthetic design, applications and social implications. It provides a platform for like-minded researchers to present their findings and latest developments in social robotics, covering relevant advances in engineering, computing, arts and social sciences.
The journal publishes original, peer reviewed articles and contributions on innovative ideas and concepts, new discoveries and improvements, as well as novel applications, by leading researchers and developers regarding the latest fundamental advances in the core technologies that form the backbone of social robotics, distinguished developmental projects in the area, as well as seminal works in aesthetic design, ethics and philosophy, studies on social impact and influence, pertaining to social robotics.