DNN 测试中的测试优化:调查

IF 6.6 2区 计算机科学 Q1 COMPUTER SCIENCE, SOFTWARE ENGINEERING ACM Transactions on Software Engineering and Methodology Pub Date : 2024-01-27 DOI:10.1145/3643678
Qiang Hu, Yuejun Guo, Xiaofei Xie, Maxime Cordy, Lei Ma, Mike Papadakis, Yves Le Traon
{"title":"DNN 测试中的测试优化:调查","authors":"Qiang Hu, Yuejun Guo, Xiaofei Xie, Maxime Cordy, Lei Ma, Mike Papadakis, Yves Le Traon","doi":"10.1145/3643678","DOIUrl":null,"url":null,"abstract":"<p>This paper presents a comprehensive survey on test optimization in deep neural network (DNN) testing. Here, test optimization refers to testing with low data labeling effort. We analyzed 90 papers, including 43 from the software engineering (SE) community, 32 from the machine learning (ML) community, and 15 from other communities. Our study: (i) unifies the problems as well as terminologies associated with low-labeling cost testing, (ii) compares the distinct focal points of SE and ML communities, and (iii) reveals the pitfalls in existing literature. Furthermore, we highlight the research opportunities in this domain.</p>","PeriodicalId":50933,"journal":{"name":"ACM Transactions on Software Engineering and Methodology","volume":"1 1","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2024-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Test Optimization in DNN Testing: A Survey\",\"authors\":\"Qiang Hu, Yuejun Guo, Xiaofei Xie, Maxime Cordy, Lei Ma, Mike Papadakis, Yves Le Traon\",\"doi\":\"10.1145/3643678\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper presents a comprehensive survey on test optimization in deep neural network (DNN) testing. Here, test optimization refers to testing with low data labeling effort. We analyzed 90 papers, including 43 from the software engineering (SE) community, 32 from the machine learning (ML) community, and 15 from other communities. Our study: (i) unifies the problems as well as terminologies associated with low-labeling cost testing, (ii) compares the distinct focal points of SE and ML communities, and (iii) reveals the pitfalls in existing literature. Furthermore, we highlight the research opportunities in this domain.</p>\",\"PeriodicalId\":50933,\"journal\":{\"name\":\"ACM Transactions on Software Engineering and Methodology\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2024-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Software Engineering and Methodology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3643678\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Software Engineering and Methodology","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3643678","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

本文对深度神经网络(DNN)测试中的测试优化进行了全面研究。这里的测试优化指的是以较低的数据标注工作量进行测试。我们分析了 90 篇论文,其中 43 篇来自软件工程(SE)领域,32 篇来自机器学习(ML)领域,15 篇来自其他领域。我们的研究:(i) 统一了与低标注成本测试相关的问题和术语,(ii) 比较了 SE 和 ML 社区的不同焦点,(iii) 揭示了现有文献中的误区。此外,我们还强调了该领域的研究机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Test Optimization in DNN Testing: A Survey

This paper presents a comprehensive survey on test optimization in deep neural network (DNN) testing. Here, test optimization refers to testing with low data labeling effort. We analyzed 90 papers, including 43 from the software engineering (SE) community, 32 from the machine learning (ML) community, and 15 from other communities. Our study: (i) unifies the problems as well as terminologies associated with low-labeling cost testing, (ii) compares the distinct focal points of SE and ML communities, and (iii) reveals the pitfalls in existing literature. Furthermore, we highlight the research opportunities in this domain.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Transactions on Software Engineering and Methodology
ACM Transactions on Software Engineering and Methodology 工程技术-计算机:软件工程
CiteScore
6.30
自引率
4.50%
发文量
164
审稿时长
>12 weeks
期刊介绍: Designing and building a large, complex software system is a tremendous challenge. ACM Transactions on Software Engineering and Methodology (TOSEM) publishes papers on all aspects of that challenge: specification, design, development and maintenance. It covers tools and methodologies, languages, data structures, and algorithms. TOSEM also reports on successful efforts, noting practical lessons that can be scaled and transferred to other projects, and often looks at applications of innovative technologies. The tone is scholarly but readable; the content is worthy of study; the presentation is effective.
期刊最新文献
Effective, Platform-Independent GUI Testing via Image Embedding and Reinforcement Learning Bitmap-Based Security Monitoring for Deeply Embedded Systems Harmonising Contributions: Exploring Diversity in Software Engineering through CQA Mining on Stack Overflow An Empirical Study on the Characteristics of Database Access Bugs in Java Applications Self-planning Code Generation with Large Language Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1