Rebekah Hammack, Ibrahim Yeter, Christina Pavlovich, Tugba Boz
{"title":"职前小学教师的理工科教学自我效能感和成果预期:通过不同的课程模式探索效能感来源经验的影响","authors":"Rebekah Hammack, Ibrahim Yeter, Christina Pavlovich, Tugba Boz","doi":"10.1186/s40594-024-00464-9","DOIUrl":null,"url":null,"abstract":"Teacher efficacy is one of the most influential components for effective instruction, highlighting the importance of providing preservice teachers (PSTs) with opportunities to learn how to teach engineering during their college preparatory coursework. Making space for engineering instruction within science methods coursework could provide opportunities for PSTs to enhance their engineering teaching efficacy but also requires course instructors to give up some time previously devoted to science-focused instruction. The purpose of the current study was to explore how infusing engineering learning opportunities into a science methods course impacts PSTs’ engineering and science teaching efficacy and outcome expectancy. Pre/post-surveys were completed by PSTs enrolled in a Kindergarten-8th grade science methods course offered in four modalities (i.e., face-to-face, hybrid, online, rapid shift online). The course offered multiple engineering-focused learning activities and vicarious experiences. PSTs’ science teaching efficacy beliefs, engineering teaching efficacy beliefs, science teaching outcome expectancy, and engineering teaching outcome expectancy all significantly increased from pre- to post-test. There was no significant difference between efficacy gains based on course modality. The purposeful inclusion of multiple engineering activities and vicarious experiences allows for significant gains in science and engineering teaching efficacy and outcome expectancy regardless of the modality in which the course is taken. This study shows that having varied efficacy source experiences while learning engineering design can result in increased efficacy, even in the absence of field experience and face-to-face coursework, and that the inclusion of these engineering experiences with science methods coursework does not detract from enhancing science teaching efficacy beliefs and outcome expectancy. Further research is needed to more closely examine individual components of science methods courses and the impacts each component has when implemented using different course modalities.","PeriodicalId":48581,"journal":{"name":"International Journal of Stem Education","volume":"156 1","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pre-service elementary teachers’ science and engineering teaching self-efficacy and outcome expectancy: exploring the impacts of efficacy source experiences through varying course modalities\",\"authors\":\"Rebekah Hammack, Ibrahim Yeter, Christina Pavlovich, Tugba Boz\",\"doi\":\"10.1186/s40594-024-00464-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Teacher efficacy is one of the most influential components for effective instruction, highlighting the importance of providing preservice teachers (PSTs) with opportunities to learn how to teach engineering during their college preparatory coursework. Making space for engineering instruction within science methods coursework could provide opportunities for PSTs to enhance their engineering teaching efficacy but also requires course instructors to give up some time previously devoted to science-focused instruction. The purpose of the current study was to explore how infusing engineering learning opportunities into a science methods course impacts PSTs’ engineering and science teaching efficacy and outcome expectancy. Pre/post-surveys were completed by PSTs enrolled in a Kindergarten-8th grade science methods course offered in four modalities (i.e., face-to-face, hybrid, online, rapid shift online). The course offered multiple engineering-focused learning activities and vicarious experiences. PSTs’ science teaching efficacy beliefs, engineering teaching efficacy beliefs, science teaching outcome expectancy, and engineering teaching outcome expectancy all significantly increased from pre- to post-test. There was no significant difference between efficacy gains based on course modality. The purposeful inclusion of multiple engineering activities and vicarious experiences allows for significant gains in science and engineering teaching efficacy and outcome expectancy regardless of the modality in which the course is taken. This study shows that having varied efficacy source experiences while learning engineering design can result in increased efficacy, even in the absence of field experience and face-to-face coursework, and that the inclusion of these engineering experiences with science methods coursework does not detract from enhancing science teaching efficacy beliefs and outcome expectancy. Further research is needed to more closely examine individual components of science methods courses and the impacts each component has when implemented using different course modalities.\",\"PeriodicalId\":48581,\"journal\":{\"name\":\"International Journal of Stem Education\",\"volume\":\"156 1\",\"pages\":\"\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Stem Education\",\"FirstCategoryId\":\"95\",\"ListUrlMain\":\"https://doi.org/10.1186/s40594-024-00464-9\",\"RegionNum\":1,\"RegionCategory\":\"教育学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"EDUCATION & EDUCATIONAL RESEARCH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Stem Education","FirstCategoryId":"95","ListUrlMain":"https://doi.org/10.1186/s40594-024-00464-9","RegionNum":1,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
Pre-service elementary teachers’ science and engineering teaching self-efficacy and outcome expectancy: exploring the impacts of efficacy source experiences through varying course modalities
Teacher efficacy is one of the most influential components for effective instruction, highlighting the importance of providing preservice teachers (PSTs) with opportunities to learn how to teach engineering during their college preparatory coursework. Making space for engineering instruction within science methods coursework could provide opportunities for PSTs to enhance their engineering teaching efficacy but also requires course instructors to give up some time previously devoted to science-focused instruction. The purpose of the current study was to explore how infusing engineering learning opportunities into a science methods course impacts PSTs’ engineering and science teaching efficacy and outcome expectancy. Pre/post-surveys were completed by PSTs enrolled in a Kindergarten-8th grade science methods course offered in four modalities (i.e., face-to-face, hybrid, online, rapid shift online). The course offered multiple engineering-focused learning activities and vicarious experiences. PSTs’ science teaching efficacy beliefs, engineering teaching efficacy beliefs, science teaching outcome expectancy, and engineering teaching outcome expectancy all significantly increased from pre- to post-test. There was no significant difference between efficacy gains based on course modality. The purposeful inclusion of multiple engineering activities and vicarious experiences allows for significant gains in science and engineering teaching efficacy and outcome expectancy regardless of the modality in which the course is taken. This study shows that having varied efficacy source experiences while learning engineering design can result in increased efficacy, even in the absence of field experience and face-to-face coursework, and that the inclusion of these engineering experiences with science methods coursework does not detract from enhancing science teaching efficacy beliefs and outcome expectancy. Further research is needed to more closely examine individual components of science methods courses and the impacts each component has when implemented using different course modalities.
期刊介绍:
The International Journal of STEM Education is a multidisciplinary journal in subject-content education that focuses on the study of teaching and learning in science, technology, engineering, and mathematics (STEM). It is being established as a brand new, forward looking journal in the field of education. As a peer-reviewed journal, it is positioned to promote research and educational development in the rapidly evolving field of STEM education around the world.