Keiko Kitagishi, Takayuki Kawai, Masayoshi Tonouchi, and Kazunori Serita
{"title":"太赫兹毛细管电泳(THz-CE)用于直接检测溶液中的分离物质","authors":"Keiko Kitagishi, Takayuki Kawai, Masayoshi Tonouchi, and Kazunori Serita","doi":"10.1364/ome.500594","DOIUrl":null,"url":null,"abstract":"We present a novel technique for capillary electrophoresis (CE) using terahertz (THz) waves, namely “THz-CE,” which enables us to sensitively detect separated substances in a solution flowing in a hollow of capillary whose inner diameter is smaller than 100 µm. Such THz detection could be achieved by utilizing the near-field interaction between a solution filled in a capillary and a point THz source that was locally generated by optical rectification in a nonlinear optical crystal irradiated with a femtosecond pulse laser. Here, we investigated the performance of THz-CE numerically and experimentally, and succeeded in observing the electrophoretic chromatogram for the separation between acetic acid and <i>n</i>-propionic acid by THz-CE.","PeriodicalId":19548,"journal":{"name":"Optical Materials Express","volume":"36 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Terahertz-capillary electrophoresis (THz-CE) for direct detection of separated substances in solutions\",\"authors\":\"Keiko Kitagishi, Takayuki Kawai, Masayoshi Tonouchi, and Kazunori Serita\",\"doi\":\"10.1364/ome.500594\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a novel technique for capillary electrophoresis (CE) using terahertz (THz) waves, namely “THz-CE,” which enables us to sensitively detect separated substances in a solution flowing in a hollow of capillary whose inner diameter is smaller than 100 µm. Such THz detection could be achieved by utilizing the near-field interaction between a solution filled in a capillary and a point THz source that was locally generated by optical rectification in a nonlinear optical crystal irradiated with a femtosecond pulse laser. Here, we investigated the performance of THz-CE numerically and experimentally, and succeeded in observing the electrophoretic chromatogram for the separation between acetic acid and <i>n</i>-propionic acid by THz-CE.\",\"PeriodicalId\":19548,\"journal\":{\"name\":\"Optical Materials Express\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optical Materials Express\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1364/ome.500594\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Materials Express","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1364/ome.500594","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Terahertz-capillary electrophoresis (THz-CE) for direct detection of separated substances in solutions
We present a novel technique for capillary electrophoresis (CE) using terahertz (THz) waves, namely “THz-CE,” which enables us to sensitively detect separated substances in a solution flowing in a hollow of capillary whose inner diameter is smaller than 100 µm. Such THz detection could be achieved by utilizing the near-field interaction between a solution filled in a capillary and a point THz source that was locally generated by optical rectification in a nonlinear optical crystal irradiated with a femtosecond pulse laser. Here, we investigated the performance of THz-CE numerically and experimentally, and succeeded in observing the electrophoretic chromatogram for the separation between acetic acid and n-propionic acid by THz-CE.
期刊介绍:
The Optical Society (OSA) publishes high-quality, peer-reviewed articles in its portfolio of journals, which serve the full breadth of the optics and photonics community.
Optical Materials Express (OMEx), OSA''s open-access, rapid-review journal, primarily emphasizes advances in both conventional and novel optical materials, their properties, theory and modeling, synthesis and fabrication approaches for optics and photonics; how such materials contribute to novel optical behavior; and how they enable new or improved optical devices. The journal covers a full range of topics, including, but not limited to:
Artificially engineered optical structures
Biomaterials
Optical detector materials
Optical storage media
Materials for integrated optics
Nonlinear optical materials
Laser materials
Metamaterials
Nanomaterials
Organics and polymers
Soft materials
IR materials
Materials for fiber optics
Hybrid technologies
Materials for quantum photonics
Optical Materials Express considers original research articles, feature issue contributions, invited reviews, and comments on published articles. The Journal also publishes occasional short, timely opinion articles from experts and thought-leaders in the field on current or emerging topic areas that are generating significant interest.