使用新型单桩地基的近海风力涡轮机在不同侧向和地震荷载下的动态响应

IF 1.2 4区 工程技术 Q3 ACOUSTICS Shock and Vibration Pub Date : 2024-01-30 DOI:10.1155/2024/2329389
Mehdi Ebadi-Jamkhaneh, Denise-Penelope N. Kontoni
{"title":"使用新型单桩地基的近海风力涡轮机在不同侧向和地震荷载下的动态响应","authors":"Mehdi Ebadi-Jamkhaneh, Denise-Penelope N. Kontoni","doi":"10.1155/2024/2329389","DOIUrl":null,"url":null,"abstract":"Using a monopile foundation due to a reliable and simple technology has a wide application in engineering structures. This paper investigates numerically the performance of an offshore wind turbine with a monopile foundation equipped with a restriction plate at a middle inside height of the monopile under the wind, wave, and seismic loadings. Different parameters, including wind velocity, wave period, wave height, soil characteristics, and combination of loadings, are considered in nonlinear finite element dynamic analyses. Results are given in terms of the distribution of displacement and bending moment over the turbine height and frequencies. The results reveal that by increasing the wind velocity, the responses of the tower increase, and the wind load acting on the hub has the most important effect on the turbine behavior rather than the wind load acting on the tower body. Furthermore, the values of maximum displacement and bending moment under wind and wave loading decrease with the increase of the shear strength of the soil, whereas the responses of the tower under earthquake loading increase. Generally, it is necessary to consider the effect of a combination of wind, wave, and earthquake loadings on the design of the turbine tower.","PeriodicalId":21915,"journal":{"name":"Shock and Vibration","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic Response of Offshore Wind Turbine with a New Monopile Foundation under Different Lateral and Seismic Loadings\",\"authors\":\"Mehdi Ebadi-Jamkhaneh, Denise-Penelope N. Kontoni\",\"doi\":\"10.1155/2024/2329389\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using a monopile foundation due to a reliable and simple technology has a wide application in engineering structures. This paper investigates numerically the performance of an offshore wind turbine with a monopile foundation equipped with a restriction plate at a middle inside height of the monopile under the wind, wave, and seismic loadings. Different parameters, including wind velocity, wave period, wave height, soil characteristics, and combination of loadings, are considered in nonlinear finite element dynamic analyses. Results are given in terms of the distribution of displacement and bending moment over the turbine height and frequencies. The results reveal that by increasing the wind velocity, the responses of the tower increase, and the wind load acting on the hub has the most important effect on the turbine behavior rather than the wind load acting on the tower body. Furthermore, the values of maximum displacement and bending moment under wind and wave loading decrease with the increase of the shear strength of the soil, whereas the responses of the tower under earthquake loading increase. Generally, it is necessary to consider the effect of a combination of wind, wave, and earthquake loadings on the design of the turbine tower.\",\"PeriodicalId\":21915,\"journal\":{\"name\":\"Shock and Vibration\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Shock and Vibration\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/2329389\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Shock and Vibration","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2024/2329389","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

摘要

单桩基础技术可靠、简单,在工程结构中应用广泛。本文通过数值计算研究了单桩基础的海上风力涡轮机在风、波和地震荷载作用下的性能,单桩基础在中间内侧高度处装有限制板。在非线性有限元动态分析中考虑了不同的参数,包括风速、波周期、波高、土壤特性和荷载组合。结果显示了位移和弯矩在涡轮机高度和频率上的分布。结果表明,随着风速的增加,塔架的响应也随之增加,作用在轮毂上的风荷载对涡轮机行为的影响最大,而不是作用在塔身上的风荷载。此外,风荷载和波浪荷载下的最大位移和弯矩值随着土壤抗剪强度的增加而减小,而塔架在地震荷载下的响应则增加。一般来说,有必要考虑风荷载、波浪荷载和地震荷载对风电塔筒设计的综合影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dynamic Response of Offshore Wind Turbine with a New Monopile Foundation under Different Lateral and Seismic Loadings
Using a monopile foundation due to a reliable and simple technology has a wide application in engineering structures. This paper investigates numerically the performance of an offshore wind turbine with a monopile foundation equipped with a restriction plate at a middle inside height of the monopile under the wind, wave, and seismic loadings. Different parameters, including wind velocity, wave period, wave height, soil characteristics, and combination of loadings, are considered in nonlinear finite element dynamic analyses. Results are given in terms of the distribution of displacement and bending moment over the turbine height and frequencies. The results reveal that by increasing the wind velocity, the responses of the tower increase, and the wind load acting on the hub has the most important effect on the turbine behavior rather than the wind load acting on the tower body. Furthermore, the values of maximum displacement and bending moment under wind and wave loading decrease with the increase of the shear strength of the soil, whereas the responses of the tower under earthquake loading increase. Generally, it is necessary to consider the effect of a combination of wind, wave, and earthquake loadings on the design of the turbine tower.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Shock and Vibration
Shock and Vibration 物理-工程:机械
CiteScore
3.40
自引率
6.20%
发文量
384
审稿时长
3 months
期刊介绍: Shock and Vibration publishes papers on all aspects of shock and vibration, especially in relation to civil, mechanical and aerospace engineering applications, as well as transport, materials and geoscience. Papers may be theoretical or experimental, and either fundamental or highly applied.
期刊最新文献
Control Effect Analysis and Engineering Application of Anchor Cable Beam-Truss Structure on Large-Deformation Roadway in Deep Coal Mine Study on Ultrasonic Characteristics and Prediction of Rock with Different Pore Sizes Deformation and Failure Evolution Law and Support Optimization of Gob-Side Entry in Weakly Cemented Soft Rock under the Influence of Fault Study on Pretightening Loss Effect of Bolt Support in Deep Soft Rock Roadway Examination of Precast Concrete Movement Subjected to Vibration Employing Mass-Spring Model with Two Convective Masses
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1