{"title":"基于插值技术的时间分数平流扩散方程高精度数值方法","authors":"Yan Chen, Xindong Zhang","doi":"10.1155/2024/2740720","DOIUrl":null,"url":null,"abstract":"In this paper, the time-fractional advection-diffusion equation (TFADE) is solved by the barycentric Lagrange interpolation collocation method (BLICM). In order to approximate the fractional derivative under the definition of Caputo, BLICM is used to approximate the unknown function. We obtain the discrete scheme of the equation by combining BLICM with the Gauss-Legendre quadrature rule. The convergence rate for the TFADE equation of the BLICM is derived, and the accuracy of the discrete scheme can be improved by modifying the number of Gaussian nodes. To illustrate the efficiency and accuracy of the present method, a few numerical examples are presented and compared with the other existing methods.","PeriodicalId":54214,"journal":{"name":"Journal of Mathematics","volume":"221 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A High Accuracy Numerical Method Based on Interpolation Technique for Time-Fractional Advection-Diffusion Equations\",\"authors\":\"Yan Chen, Xindong Zhang\",\"doi\":\"10.1155/2024/2740720\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the time-fractional advection-diffusion equation (TFADE) is solved by the barycentric Lagrange interpolation collocation method (BLICM). In order to approximate the fractional derivative under the definition of Caputo, BLICM is used to approximate the unknown function. We obtain the discrete scheme of the equation by combining BLICM with the Gauss-Legendre quadrature rule. The convergence rate for the TFADE equation of the BLICM is derived, and the accuracy of the discrete scheme can be improved by modifying the number of Gaussian nodes. To illustrate the efficiency and accuracy of the present method, a few numerical examples are presented and compared with the other existing methods.\",\"PeriodicalId\":54214,\"journal\":{\"name\":\"Journal of Mathematics\",\"volume\":\"221 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/2740720\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1155/2024/2740720","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
A High Accuracy Numerical Method Based on Interpolation Technique for Time-Fractional Advection-Diffusion Equations
In this paper, the time-fractional advection-diffusion equation (TFADE) is solved by the barycentric Lagrange interpolation collocation method (BLICM). In order to approximate the fractional derivative under the definition of Caputo, BLICM is used to approximate the unknown function. We obtain the discrete scheme of the equation by combining BLICM with the Gauss-Legendre quadrature rule. The convergence rate for the TFADE equation of the BLICM is derived, and the accuracy of the discrete scheme can be improved by modifying the number of Gaussian nodes. To illustrate the efficiency and accuracy of the present method, a few numerical examples are presented and compared with the other existing methods.
期刊介绍:
Journal of Mathematics is a broad scope journal that publishes original research articles as well as review articles on all aspects of both pure and applied mathematics. As well as original research, Journal of Mathematics also publishes focused review articles that assess the state of the art, and identify upcoming challenges and promising solutions for the community.