{"title":"深度学习辅助药物发现方法的进展:自我回顾","authors":"Haiping Zhang, Konda Mani Saravanan","doi":"10.2174/0115748936285690240101041704","DOIUrl":null,"url":null,"abstract":"Artificial Intelligence is a field within computer science that endeavors to replicate the intricate structures and operational mechanisms inherent in the human brain. Machine learning is a subfield of artificial intelligence that focuses on developing models by analyzing training data. Deep learning is a distinct subfield within artificial intelligence, characterized by using models that depict geometric transformations across multiple layers. The deep learning has shown significant promise in various domains, including health and life sciences. In recent times, deep learning has demonstrated successful applications in drug discovery. In this self-review, we present recent methods developed with the aid of deep learning. The objective is to give a brief overview of the present cutting-edge advancements in drug discovery from our group. We have systematically discussed experimental evidence and proof of concept examples for the deep learning-based models developed, such as Deep- BindBC, DeepPep, and DeepBindRG. These developments not only shed light on the existing challenges but also emphasize the achievements and prospects for future drug discovery and development progress.","PeriodicalId":10801,"journal":{"name":"Current Bioinformatics","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advances in Deep Learning Assisted Drug Discovery Methods: A Self-review\",\"authors\":\"Haiping Zhang, Konda Mani Saravanan\",\"doi\":\"10.2174/0115748936285690240101041704\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Artificial Intelligence is a field within computer science that endeavors to replicate the intricate structures and operational mechanisms inherent in the human brain. Machine learning is a subfield of artificial intelligence that focuses on developing models by analyzing training data. Deep learning is a distinct subfield within artificial intelligence, characterized by using models that depict geometric transformations across multiple layers. The deep learning has shown significant promise in various domains, including health and life sciences. In recent times, deep learning has demonstrated successful applications in drug discovery. In this self-review, we present recent methods developed with the aid of deep learning. The objective is to give a brief overview of the present cutting-edge advancements in drug discovery from our group. We have systematically discussed experimental evidence and proof of concept examples for the deep learning-based models developed, such as Deep- BindBC, DeepPep, and DeepBindRG. These developments not only shed light on the existing challenges but also emphasize the achievements and prospects for future drug discovery and development progress.\",\"PeriodicalId\":10801,\"journal\":{\"name\":\"Current Bioinformatics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.2174/0115748936285690240101041704\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2174/0115748936285690240101041704","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Advances in Deep Learning Assisted Drug Discovery Methods: A Self-review
Artificial Intelligence is a field within computer science that endeavors to replicate the intricate structures and operational mechanisms inherent in the human brain. Machine learning is a subfield of artificial intelligence that focuses on developing models by analyzing training data. Deep learning is a distinct subfield within artificial intelligence, characterized by using models that depict geometric transformations across multiple layers. The deep learning has shown significant promise in various domains, including health and life sciences. In recent times, deep learning has demonstrated successful applications in drug discovery. In this self-review, we present recent methods developed with the aid of deep learning. The objective is to give a brief overview of the present cutting-edge advancements in drug discovery from our group. We have systematically discussed experimental evidence and proof of concept examples for the deep learning-based models developed, such as Deep- BindBC, DeepPep, and DeepBindRG. These developments not only shed light on the existing challenges but also emphasize the achievements and prospects for future drug discovery and development progress.
期刊介绍:
Current Bioinformatics aims to publish all the latest and outstanding developments in bioinformatics. Each issue contains a series of timely, in-depth/mini-reviews, research papers and guest edited thematic issues written by leaders in the field, covering a wide range of the integration of biology with computer and information science.
The journal focuses on advances in computational molecular/structural biology, encompassing areas such as computing in biomedicine and genomics, computational proteomics and systems biology, and metabolic pathway engineering. Developments in these fields have direct implications on key issues related to health care, medicine, genetic disorders, development of agricultural products, renewable energy, environmental protection, etc.