基于卷积神经网络预测煤炭浮选精矿中的灰分含量

IF 2 4区 工程技术 Q4 ENERGY & FUELS International Journal of Coal Preparation and Utilization Pub Date : 2024-01-24 DOI:10.1080/19392699.2024.2308549
Zhicheng Liu, Longjiang Li, Jiang Zeng, Yalan Wang, Jian Yang, Xiang Liu
{"title":"基于卷积神经网络预测煤炭浮选精矿中的灰分含量","authors":"Zhicheng Liu, Longjiang Li, Jiang Zeng, Yalan Wang, Jian Yang, Xiang Liu","doi":"10.1080/19392699.2024.2308549","DOIUrl":null,"url":null,"abstract":"Convolutional neural networks (CNNs) are currently one of the most popular image classification technologies. Their excellent image classification ability enables the prediction of the ash content ...","PeriodicalId":13941,"journal":{"name":"International Journal of Coal Preparation and Utilization","volume":"53 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting the ash content in coal flotation concentrate based on convolutional neural network\",\"authors\":\"Zhicheng Liu, Longjiang Li, Jiang Zeng, Yalan Wang, Jian Yang, Xiang Liu\",\"doi\":\"10.1080/19392699.2024.2308549\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Convolutional neural networks (CNNs) are currently one of the most popular image classification technologies. Their excellent image classification ability enables the prediction of the ash content ...\",\"PeriodicalId\":13941,\"journal\":{\"name\":\"International Journal of Coal Preparation and Utilization\",\"volume\":\"53 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Coal Preparation and Utilization\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/19392699.2024.2308549\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Coal Preparation and Utilization","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/19392699.2024.2308549","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

卷积神经网络(CNN)是目前最流行的图像分类技术之一。其出色的图像分类能力可预测灰度含量、灰度值和灰度......
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Predicting the ash content in coal flotation concentrate based on convolutional neural network
Convolutional neural networks (CNNs) are currently one of the most popular image classification technologies. Their excellent image classification ability enables the prediction of the ash content ...
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.10
自引率
23.80%
发文量
106
审稿时长
6 months
期刊介绍: International Journal of Coal Preparation and Utilization publishes original research papers, short communications, review articles, book reviews, and symposium announcements covering all aspects of coal preparation. The journal is significant reading for all individuals involved with coal preparation, including those in operations, engineering, management, education, and scientific research. Topics include: coal properties and coal petrography; coal quality and characterization; surface chemistry of coal and minerals; crushing, grinding and liberation; coal screening and classification; dense medium and density separations; froth flotation and oil agglomeration; process control and optimization; flocculation and thickening; dewatering and thermal drying; briquetting and pelletizing; coal handling and storage; coal utilization and blending; waste disposal and pollution; utility waste product utilization; and carbon based material. Additional subjects covered by the journal include properties of coal/water and coal/oil slurries as well as the processing of oil shales and tarsands by physical and physiochemical methods.
期刊最新文献
A novel coal quality index and its estimation using diffuse reflectance spectroscopy Optimizing ash content detection and prediction in flotation tailings using a new approach to enhance feature extraction and deep learning algorithms Nanopore characterization related to particle size during coal pulverization: insights from cryogenic N2 adsorption experiments Detection of coal gangue based on MSRCR algorithm and improved lightweight YOLOv8n Study on pyrolysis characteristics of Gonghe oil shale using Py-GC/MS under different atmospheres
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1