Mingxing Duan, Kenli Li, Weinan Zhang, Jiarui Qin, Bin Xiao
{"title":"通过生成逼真的假样本攻击点击率预测器","authors":"Mingxing Duan, Kenli Li, Weinan Zhang, Jiarui Qin, Bin Xiao","doi":"10.1145/3643685","DOIUrl":null,"url":null,"abstract":"<p>How to construct imperceptible (realistic) fake samples is critical in adversarial attacks. Due to the sample feature diversity of a recommender system (containing both discrete and continuous features), traditional gradient-based adversarial attack methods may fail to construct realistic fake samples. Meanwhile, most recommendation models adopt click-through rate (CTR) predictors, which usually utilize black-box deep models with discrete features as input. Thus, how to efficiently construct realistic fake samples for black-box recommender systems is still full of challenges. In this paper, we propose a hierarchical adversarial attack method against black-box CTR models via generating realistic fake samples, named CTRAttack. To better train the generation network, the weights of its embedding layer are shared with those of the substitute model, with both the similarity loss and classification loss used to update the generation network. To ensure that the discrete features of the generated fake samples are all real, we first adopt the similarity loss to ensure that the distribution of the generated perturbed samples is sufficiently close to the distribution of the real features, then the nearest neighbor algorithm is used to retrieve the most appropriate features for non-existent discrete features from the candidate instance set. Extensive experiments demonstrate that CTRAttack can not only effectively attack the black-box recommender systems but also improve the robustness of these models while maintaining prediction accuracy.</p>","PeriodicalId":49249,"journal":{"name":"ACM Transactions on Knowledge Discovery from Data","volume":"10 1","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Attacking Click-through Rate Predictors via Generating Realistic Fake Samples\",\"authors\":\"Mingxing Duan, Kenli Li, Weinan Zhang, Jiarui Qin, Bin Xiao\",\"doi\":\"10.1145/3643685\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>How to construct imperceptible (realistic) fake samples is critical in adversarial attacks. Due to the sample feature diversity of a recommender system (containing both discrete and continuous features), traditional gradient-based adversarial attack methods may fail to construct realistic fake samples. Meanwhile, most recommendation models adopt click-through rate (CTR) predictors, which usually utilize black-box deep models with discrete features as input. Thus, how to efficiently construct realistic fake samples for black-box recommender systems is still full of challenges. In this paper, we propose a hierarchical adversarial attack method against black-box CTR models via generating realistic fake samples, named CTRAttack. To better train the generation network, the weights of its embedding layer are shared with those of the substitute model, with both the similarity loss and classification loss used to update the generation network. To ensure that the discrete features of the generated fake samples are all real, we first adopt the similarity loss to ensure that the distribution of the generated perturbed samples is sufficiently close to the distribution of the real features, then the nearest neighbor algorithm is used to retrieve the most appropriate features for non-existent discrete features from the candidate instance set. Extensive experiments demonstrate that CTRAttack can not only effectively attack the black-box recommender systems but also improve the robustness of these models while maintaining prediction accuracy.</p>\",\"PeriodicalId\":49249,\"journal\":{\"name\":\"ACM Transactions on Knowledge Discovery from Data\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Knowledge Discovery from Data\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3643685\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Knowledge Discovery from Data","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3643685","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Attacking Click-through Rate Predictors via Generating Realistic Fake Samples
How to construct imperceptible (realistic) fake samples is critical in adversarial attacks. Due to the sample feature diversity of a recommender system (containing both discrete and continuous features), traditional gradient-based adversarial attack methods may fail to construct realistic fake samples. Meanwhile, most recommendation models adopt click-through rate (CTR) predictors, which usually utilize black-box deep models with discrete features as input. Thus, how to efficiently construct realistic fake samples for black-box recommender systems is still full of challenges. In this paper, we propose a hierarchical adversarial attack method against black-box CTR models via generating realistic fake samples, named CTRAttack. To better train the generation network, the weights of its embedding layer are shared with those of the substitute model, with both the similarity loss and classification loss used to update the generation network. To ensure that the discrete features of the generated fake samples are all real, we first adopt the similarity loss to ensure that the distribution of the generated perturbed samples is sufficiently close to the distribution of the real features, then the nearest neighbor algorithm is used to retrieve the most appropriate features for non-existent discrete features from the candidate instance set. Extensive experiments demonstrate that CTRAttack can not only effectively attack the black-box recommender systems but also improve the robustness of these models while maintaining prediction accuracy.
期刊介绍:
TKDD welcomes papers on a full range of research in the knowledge discovery and analysis of diverse forms of data. Such subjects include, but are not limited to: scalable and effective algorithms for data mining and big data analysis, mining brain networks, mining data streams, mining multi-media data, mining high-dimensional data, mining text, Web, and semi-structured data, mining spatial and temporal data, data mining for community generation, social network analysis, and graph structured data, security and privacy issues in data mining, visual, interactive and online data mining, pre-processing and post-processing for data mining, robust and scalable statistical methods, data mining languages, foundations of data mining, KDD framework and process, and novel applications and infrastructures exploiting data mining technology including massively parallel processing and cloud computing platforms. TKDD encourages papers that explore the above subjects in the context of large distributed networks of computers, parallel or multiprocessing computers, or new data devices. TKDD also encourages papers that describe emerging data mining applications that cannot be satisfied by the current data mining technology.