{"title":"多变量时空数据的估算量级向量自回归模型","authors":"Liang Jinwen, Tian Maozai","doi":"10.1002/sam.11658","DOIUrl":null,"url":null,"abstract":"Imputing missing values in multivariate spatial–temporal data is important in many fields. Existing low rank tensor learning methods are popular for handling this task but are sensitive to high level of skewness. The aim of this paper is to develop an alternative method with robustness and high imputation accuracy for multivariate spatial–temporal data. In view of the fact that quantile regression is robust to noises and outliers, we propose an imputed quantile vector autoregressive (IQVAR) model. IQVAR can simultaneously impute missing values and estimate parameters of quantile vector autoregressive model. The objective function includes check loss and nuclear norm penalization. We develop an ADMM (Alternating Direction Method of Multipliers) algorithm to solve the resulting optimization problem. Simulation studies and real data analysis are conducted to verify the efficiency of IQVAR. Compared with other approaches, IQVAR is more robust and accurate.","PeriodicalId":48684,"journal":{"name":"Statistical Analysis and Data Mining","volume":"40 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Imputed quantile vector autoregressive model for multivariate spatial–temporal data\",\"authors\":\"Liang Jinwen, Tian Maozai\",\"doi\":\"10.1002/sam.11658\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Imputing missing values in multivariate spatial–temporal data is important in many fields. Existing low rank tensor learning methods are popular for handling this task but are sensitive to high level of skewness. The aim of this paper is to develop an alternative method with robustness and high imputation accuracy for multivariate spatial–temporal data. In view of the fact that quantile regression is robust to noises and outliers, we propose an imputed quantile vector autoregressive (IQVAR) model. IQVAR can simultaneously impute missing values and estimate parameters of quantile vector autoregressive model. The objective function includes check loss and nuclear norm penalization. We develop an ADMM (Alternating Direction Method of Multipliers) algorithm to solve the resulting optimization problem. Simulation studies and real data analysis are conducted to verify the efficiency of IQVAR. Compared with other approaches, IQVAR is more robust and accurate.\",\"PeriodicalId\":48684,\"journal\":{\"name\":\"Statistical Analysis and Data Mining\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Analysis and Data Mining\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1002/sam.11658\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Analysis and Data Mining","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1002/sam.11658","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Imputed quantile vector autoregressive model for multivariate spatial–temporal data
Imputing missing values in multivariate spatial–temporal data is important in many fields. Existing low rank tensor learning methods are popular for handling this task but are sensitive to high level of skewness. The aim of this paper is to develop an alternative method with robustness and high imputation accuracy for multivariate spatial–temporal data. In view of the fact that quantile regression is robust to noises and outliers, we propose an imputed quantile vector autoregressive (IQVAR) model. IQVAR can simultaneously impute missing values and estimate parameters of quantile vector autoregressive model. The objective function includes check loss and nuclear norm penalization. We develop an ADMM (Alternating Direction Method of Multipliers) algorithm to solve the resulting optimization problem. Simulation studies and real data analysis are conducted to verify the efficiency of IQVAR. Compared with other approaches, IQVAR is more robust and accurate.
期刊介绍:
Statistical Analysis and Data Mining addresses the broad area of data analysis, including statistical approaches, machine learning, data mining, and applications. Topics include statistical and computational approaches for analyzing massive and complex datasets, novel statistical and/or machine learning methods and theory, and state-of-the-art applications with high impact. Of special interest are articles that describe innovative analytical techniques, and discuss their application to real problems, in such a way that they are accessible and beneficial to domain experts across science, engineering, and commerce.
The focus of the journal is on papers which satisfy one or more of the following criteria:
Solve data analysis problems associated with massive, complex datasets
Develop innovative statistical approaches, machine learning algorithms, or methods integrating ideas across disciplines, e.g., statistics, computer science, electrical engineering, operation research.
Formulate and solve high-impact real-world problems which challenge existing paradigms via new statistical and/or computational models
Provide survey to prominent research topics.