{"title":"用于神经退行性病变的黄芩苷载体固体脂质纳米粒子的体外和体内研究","authors":"Mansi Varshney, Bhavna Kumar, Poorvi Varshney, Diwya Kumar Lal, N. Sethiya","doi":"10.2174/0122103031263883231230085819","DOIUrl":null,"url":null,"abstract":"\n\nIn the current scenario, most of the population affected by neurogenera-tive disorders like Alzheimer's, Parkinson's, Huntington's, etc., exist among the 10% population 65 years of age group. Neurodegenerative diseases are characterised as chronic and progressive disorders that occur due to the degeneration of neurons. Baicalein is a flavonoid glycoside derived from the roots of Scutellaria baicalensis. Earlier research suggested that it could be used to treat neurodegenerative illnesses. Baicalein, which was selected for the current study, was designed in-to a solid lipid nanoparticle (SLN) formulation. The SLNs have low permeability across BBB and are delivered by the non-invasive route, i.e., through nasal delivery. The In-silico docking studies were performed to examine and compare the binding affinity of Baicalein to already established drugs on the two most viable targets of Alzheimer's disease, i.e., Beta- secretase and Acetylcho-linesterase.\n\n\n\nThe current work is to formulate and evaluate the Baicalein-loaded SLN for neuro-degenerative disorders via a non-invasive route.\n\n\n\nBaicalein loaded SLN was developed by solvent emulsification diffusion method, and formulation is characterised by using different parameters such as particle size analysis, zeta po-tential, scanning electron microscope, transverse electron microscope, X-ray diffraction, Differen-tial scanning calorimetric, Fourier transforms -infrared radiations, drug entrapment, in-vitro drug release and in-silico docking studies.\n\n\n\nThe particle size of Baicalein-loaded SLN was 755.2 ± 0.48 nm, the Polydispersity index was 0.06, and the zeta potential was -32.5 ± 0.36 mV. The drug entrapment and loading efficien-cy of the optimised formulation were found to be 94% ± 0.653 and 18.2% ± 0.553, respectively. Optimised formulation shows 84.6% ± 0.3% of drug release within 30 minutes, which demon-strates the sustained release of the drug.\n\n\n\nBaicalein-loaded SLN is formulated and evaluated for the treatment of neurodegen-erative disorders. SLN is an approach to overcome the challenge of bypassing the BBB by admin-istering the drug via an intranasal route. Hence, when analysed together with the results of Bai-calein-loaded SLN and in-silico studies, it was correlated that Baicalein proved to have a targeted moiety for neurodegeneration.\n","PeriodicalId":11310,"journal":{"name":"Drug Delivery Letters","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In-vitro and In-silico Examinations on Baicalein-loaded Solid Lipid Nanoparticles for Neurodegeneration\",\"authors\":\"Mansi Varshney, Bhavna Kumar, Poorvi Varshney, Diwya Kumar Lal, N. Sethiya\",\"doi\":\"10.2174/0122103031263883231230085819\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n\\nIn the current scenario, most of the population affected by neurogenera-tive disorders like Alzheimer's, Parkinson's, Huntington's, etc., exist among the 10% population 65 years of age group. Neurodegenerative diseases are characterised as chronic and progressive disorders that occur due to the degeneration of neurons. Baicalein is a flavonoid glycoside derived from the roots of Scutellaria baicalensis. Earlier research suggested that it could be used to treat neurodegenerative illnesses. Baicalein, which was selected for the current study, was designed in-to a solid lipid nanoparticle (SLN) formulation. The SLNs have low permeability across BBB and are delivered by the non-invasive route, i.e., through nasal delivery. The In-silico docking studies were performed to examine and compare the binding affinity of Baicalein to already established drugs on the two most viable targets of Alzheimer's disease, i.e., Beta- secretase and Acetylcho-linesterase.\\n\\n\\n\\nThe current work is to formulate and evaluate the Baicalein-loaded SLN for neuro-degenerative disorders via a non-invasive route.\\n\\n\\n\\nBaicalein loaded SLN was developed by solvent emulsification diffusion method, and formulation is characterised by using different parameters such as particle size analysis, zeta po-tential, scanning electron microscope, transverse electron microscope, X-ray diffraction, Differen-tial scanning calorimetric, Fourier transforms -infrared radiations, drug entrapment, in-vitro drug release and in-silico docking studies.\\n\\n\\n\\nThe particle size of Baicalein-loaded SLN was 755.2 ± 0.48 nm, the Polydispersity index was 0.06, and the zeta potential was -32.5 ± 0.36 mV. The drug entrapment and loading efficien-cy of the optimised formulation were found to be 94% ± 0.653 and 18.2% ± 0.553, respectively. Optimised formulation shows 84.6% ± 0.3% of drug release within 30 minutes, which demon-strates the sustained release of the drug.\\n\\n\\n\\nBaicalein-loaded SLN is formulated and evaluated for the treatment of neurodegen-erative disorders. SLN is an approach to overcome the challenge of bypassing the BBB by admin-istering the drug via an intranasal route. Hence, when analysed together with the results of Bai-calein-loaded SLN and in-silico studies, it was correlated that Baicalein proved to have a targeted moiety for neurodegeneration.\\n\",\"PeriodicalId\":11310,\"journal\":{\"name\":\"Drug Delivery Letters\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug Delivery Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/0122103031263883231230085819\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Delivery Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0122103031263883231230085819","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
In-vitro and In-silico Examinations on Baicalein-loaded Solid Lipid Nanoparticles for Neurodegeneration
In the current scenario, most of the population affected by neurogenera-tive disorders like Alzheimer's, Parkinson's, Huntington's, etc., exist among the 10% population 65 years of age group. Neurodegenerative diseases are characterised as chronic and progressive disorders that occur due to the degeneration of neurons. Baicalein is a flavonoid glycoside derived from the roots of Scutellaria baicalensis. Earlier research suggested that it could be used to treat neurodegenerative illnesses. Baicalein, which was selected for the current study, was designed in-to a solid lipid nanoparticle (SLN) formulation. The SLNs have low permeability across BBB and are delivered by the non-invasive route, i.e., through nasal delivery. The In-silico docking studies were performed to examine and compare the binding affinity of Baicalein to already established drugs on the two most viable targets of Alzheimer's disease, i.e., Beta- secretase and Acetylcho-linesterase.
The current work is to formulate and evaluate the Baicalein-loaded SLN for neuro-degenerative disorders via a non-invasive route.
Baicalein loaded SLN was developed by solvent emulsification diffusion method, and formulation is characterised by using different parameters such as particle size analysis, zeta po-tential, scanning electron microscope, transverse electron microscope, X-ray diffraction, Differen-tial scanning calorimetric, Fourier transforms -infrared radiations, drug entrapment, in-vitro drug release and in-silico docking studies.
The particle size of Baicalein-loaded SLN was 755.2 ± 0.48 nm, the Polydispersity index was 0.06, and the zeta potential was -32.5 ± 0.36 mV. The drug entrapment and loading efficien-cy of the optimised formulation were found to be 94% ± 0.653 and 18.2% ± 0.553, respectively. Optimised formulation shows 84.6% ± 0.3% of drug release within 30 minutes, which demon-strates the sustained release of the drug.
Baicalein-loaded SLN is formulated and evaluated for the treatment of neurodegen-erative disorders. SLN is an approach to overcome the challenge of bypassing the BBB by admin-istering the drug via an intranasal route. Hence, when analysed together with the results of Bai-calein-loaded SLN and in-silico studies, it was correlated that Baicalein proved to have a targeted moiety for neurodegeneration.