粘弹性谐波强制冯米塞斯桁架中的混沌现象

Pritam Ghoshal, James Gibert, Anil K. Bajaj
{"title":"粘弹性谐波强制冯米塞斯桁架中的混沌现象","authors":"Pritam Ghoshal, James Gibert, Anil K. Bajaj","doi":"10.1115/1.4064554","DOIUrl":null,"url":null,"abstract":"\n This work investigates how viscoelasticity affects the dynamic behavior of a lumped-parameter model of a bistable von Mises truss. The system is controlled by a linear first-order equation and a second-order nonlinear Duffing equation with a quadratic nonlinearity that governs mechanical behavior. The second-order equation controls mechanical oscillations, while the linear first-order equation controls viscoelastic force evolution. Combined, the two equations form a third-order jerk equation that controls system dynamics. Viscoelasticity adds time scales and degrees of freedom to material behavior, distinguishing it from viscosity-only systems. Due to harmonic excitation, the system exhibits varied dynamic responses from periodic to quasiperiodic to chaotic. We explore the dynamics of a harmonically forced von Mises truss with viscous damping to address this purpose. We demonstrate this system's rich dynamic behavior due to driving amplitude changes. This helps explain viscoelastic system behavior. A viscoelastic unit replaces the viscous damper, and we show that, although viscous damping merely changes how fast the trajectory decays to an attractor, viscoelasticity modifies both the energy landscape and the rate of decay. In a conventional linear solid model, three viscoelastic parameters control the system's behavior instead of one, as in pure viscous damping. This adds degrees of freedom that affect system dynamics. We present the parameter space for chaotic behavior and the shift from regular to irregular motion. Finally, Melnikov's criteria identify the regular-chaotic threshold. The system's viscous and elastic components affect the chaotic threshold amplitude.","PeriodicalId":506262,"journal":{"name":"Journal of Computational and Nonlinear Dynamics","volume":"56 31","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Presence of Chaos in a Viscoelastic Harmonically Forced Von Mises Truss\",\"authors\":\"Pritam Ghoshal, James Gibert, Anil K. Bajaj\",\"doi\":\"10.1115/1.4064554\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This work investigates how viscoelasticity affects the dynamic behavior of a lumped-parameter model of a bistable von Mises truss. The system is controlled by a linear first-order equation and a second-order nonlinear Duffing equation with a quadratic nonlinearity that governs mechanical behavior. The second-order equation controls mechanical oscillations, while the linear first-order equation controls viscoelastic force evolution. Combined, the two equations form a third-order jerk equation that controls system dynamics. Viscoelasticity adds time scales and degrees of freedom to material behavior, distinguishing it from viscosity-only systems. Due to harmonic excitation, the system exhibits varied dynamic responses from periodic to quasiperiodic to chaotic. We explore the dynamics of a harmonically forced von Mises truss with viscous damping to address this purpose. We demonstrate this system's rich dynamic behavior due to driving amplitude changes. This helps explain viscoelastic system behavior. A viscoelastic unit replaces the viscous damper, and we show that, although viscous damping merely changes how fast the trajectory decays to an attractor, viscoelasticity modifies both the energy landscape and the rate of decay. In a conventional linear solid model, three viscoelastic parameters control the system's behavior instead of one, as in pure viscous damping. This adds degrees of freedom that affect system dynamics. We present the parameter space for chaotic behavior and the shift from regular to irregular motion. Finally, Melnikov's criteria identify the regular-chaotic threshold. The system's viscous and elastic components affect the chaotic threshold amplitude.\",\"PeriodicalId\":506262,\"journal\":{\"name\":\"Journal of Computational and Nonlinear Dynamics\",\"volume\":\"56 31\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational and Nonlinear Dynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4064554\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Nonlinear Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4064554","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这项研究探讨了粘弹性如何影响双稳态 von Mises 桁架的整块参数模型的动态行为。该系统由一个线性一阶方程和一个二阶非线性达芬方程控制,其中的二次非线性控制着机械行为。二阶方程控制机械振荡,而线性一阶方程控制粘弹力的演变。这两个方程结合在一起,就形成了一个控制系统动力学的三阶抽搐方程。粘弹性为材料行为增加了时间尺度和自由度,使其有别于仅有粘度的系统。由于谐波激励,系统表现出从周期到准周期再到混沌的各种动态响应。为此,我们探索了带有粘性阻尼的谐波强迫 von Mises 桁架的动力学。我们展示了该系统因驱动振幅变化而产生的丰富动态行为。这有助于解释粘弹性系统的行为。粘弹性单元取代了粘性阻尼器,我们证明,虽然粘性阻尼仅仅改变了轨迹衰减到吸引子的速度,但粘弹性同时改变了能量景观和衰减速度。在传统的线性固体模型中,三个粘弹性参数控制着系统的行为,而不是纯粘滞阻尼中的一个参数。这增加了影响系统动力学的自由度。我们介绍了混沌行为的参数空间以及从规则运动到不规则运动的转变。最后,梅尔尼科夫标准确定了规则-混沌阈值。系统的粘性和弹性成分会影响混沌阈值振幅。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Presence of Chaos in a Viscoelastic Harmonically Forced Von Mises Truss
This work investigates how viscoelasticity affects the dynamic behavior of a lumped-parameter model of a bistable von Mises truss. The system is controlled by a linear first-order equation and a second-order nonlinear Duffing equation with a quadratic nonlinearity that governs mechanical behavior. The second-order equation controls mechanical oscillations, while the linear first-order equation controls viscoelastic force evolution. Combined, the two equations form a third-order jerk equation that controls system dynamics. Viscoelasticity adds time scales and degrees of freedom to material behavior, distinguishing it from viscosity-only systems. Due to harmonic excitation, the system exhibits varied dynamic responses from periodic to quasiperiodic to chaotic. We explore the dynamics of a harmonically forced von Mises truss with viscous damping to address this purpose. We demonstrate this system's rich dynamic behavior due to driving amplitude changes. This helps explain viscoelastic system behavior. A viscoelastic unit replaces the viscous damper, and we show that, although viscous damping merely changes how fast the trajectory decays to an attractor, viscoelasticity modifies both the energy landscape and the rate of decay. In a conventional linear solid model, three viscoelastic parameters control the system's behavior instead of one, as in pure viscous damping. This adds degrees of freedom that affect system dynamics. We present the parameter space for chaotic behavior and the shift from regular to irregular motion. Finally, Melnikov's criteria identify the regular-chaotic threshold. The system's viscous and elastic components affect the chaotic threshold amplitude.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Posteriori Error Analysis of Defect Correction Method for Singular Perturbation Problems with Discontinuous Coefficient and Point Source Nonlinear Static and Dynamic Responses of a Floating Rod Pendulum Harmonic Response of a Highly Flexible Thin Long Cantilever Beam: A Semi-Analytical Approach in Time-Domain with ANCF Modeling and Experimental Validation Full-Dimensional PD Control Technique for Turing Pattern and Bifurcation of Delayed Reaction-Diffusion Bi-Directional Ring Neural Networks Haar Wavelet Approach for the Mathematical Model On Hepatitis B Virus
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1