Muhammad Saeed, Firas H. Albadran, A. F. Zahoor, Asif Nisar, Aamal A. Al-Mutairi, S. Al-Hussain, Ali Irfan, Magdi E. A. Zaki
{"title":"Co3O4-rGO 的合成、表征和光催化活性评估","authors":"Muhammad Saeed, Firas H. Albadran, A. F. Zahoor, Asif Nisar, Aamal A. Al-Mutairi, S. Al-Hussain, Ali Irfan, Magdi E. A. Zaki","doi":"10.3390/catal14020096","DOIUrl":null,"url":null,"abstract":"Water contamination with synthetic dyes is an escalating problem worldwide. Herein, Co3O4-decorated reduced graphene oxide (Co3O4-rGO) is reported as an effective heterogeneous photocatalyst for the decomposition of organic dyes. The synthesis of Co3O4-rGO was confirmed via spectroscopic techniques including XRD, XPS, TEM, and FTIR. After characterization, the prepared Co3O4-rGO composite was tested as a photocatalyst for the degradation of methylene blue and methyl orange. The photocatalytic efficiency of Co3O4-rGO was >95% after 60 min, corresponding to 200 mg/L as the initial concentration of each dye. The photodegradation of MB and MO was confirmed by BOD and COD measurements. Experimental parameters like the re-usability of Co3O4-rGO, the effect of catalyst dosage, and the effect of dye concentration on photocatalytic activity were also investigated. The photocatalytic activity of Co3O4-rGO for the degradation of MB was 2.13 and 3.43 times higher than that of Co3O4 and rGO, respectively. Similarly, the photocatalytic activity of Co3O4-rGO for the degradation of MO was 2.36 and 3.56 times higher than that of Co3O4 and rGO, respectively. Hence, Co3O4-rGO was found to be an efficient and reusable photocatalyst for the decomposition of selected dyes in the aqueous medium.","PeriodicalId":9794,"journal":{"name":"Catalysts","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Co3O4-rGO—Synthesis, Characterization, and Evaluation of Photocatalytic Activities\",\"authors\":\"Muhammad Saeed, Firas H. Albadran, A. F. Zahoor, Asif Nisar, Aamal A. Al-Mutairi, S. Al-Hussain, Ali Irfan, Magdi E. A. Zaki\",\"doi\":\"10.3390/catal14020096\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Water contamination with synthetic dyes is an escalating problem worldwide. Herein, Co3O4-decorated reduced graphene oxide (Co3O4-rGO) is reported as an effective heterogeneous photocatalyst for the decomposition of organic dyes. The synthesis of Co3O4-rGO was confirmed via spectroscopic techniques including XRD, XPS, TEM, and FTIR. After characterization, the prepared Co3O4-rGO composite was tested as a photocatalyst for the degradation of methylene blue and methyl orange. The photocatalytic efficiency of Co3O4-rGO was >95% after 60 min, corresponding to 200 mg/L as the initial concentration of each dye. The photodegradation of MB and MO was confirmed by BOD and COD measurements. Experimental parameters like the re-usability of Co3O4-rGO, the effect of catalyst dosage, and the effect of dye concentration on photocatalytic activity were also investigated. The photocatalytic activity of Co3O4-rGO for the degradation of MB was 2.13 and 3.43 times higher than that of Co3O4 and rGO, respectively. Similarly, the photocatalytic activity of Co3O4-rGO for the degradation of MO was 2.36 and 3.56 times higher than that of Co3O4 and rGO, respectively. Hence, Co3O4-rGO was found to be an efficient and reusable photocatalyst for the decomposition of selected dyes in the aqueous medium.\",\"PeriodicalId\":9794,\"journal\":{\"name\":\"Catalysts\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catalysts\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.3390/catal14020096\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysts","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/catal14020096","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Co3O4-rGO—Synthesis, Characterization, and Evaluation of Photocatalytic Activities
Water contamination with synthetic dyes is an escalating problem worldwide. Herein, Co3O4-decorated reduced graphene oxide (Co3O4-rGO) is reported as an effective heterogeneous photocatalyst for the decomposition of organic dyes. The synthesis of Co3O4-rGO was confirmed via spectroscopic techniques including XRD, XPS, TEM, and FTIR. After characterization, the prepared Co3O4-rGO composite was tested as a photocatalyst for the degradation of methylene blue and methyl orange. The photocatalytic efficiency of Co3O4-rGO was >95% after 60 min, corresponding to 200 mg/L as the initial concentration of each dye. The photodegradation of MB and MO was confirmed by BOD and COD measurements. Experimental parameters like the re-usability of Co3O4-rGO, the effect of catalyst dosage, and the effect of dye concentration on photocatalytic activity were also investigated. The photocatalytic activity of Co3O4-rGO for the degradation of MB was 2.13 and 3.43 times higher than that of Co3O4 and rGO, respectively. Similarly, the photocatalytic activity of Co3O4-rGO for the degradation of MO was 2.36 and 3.56 times higher than that of Co3O4 and rGO, respectively. Hence, Co3O4-rGO was found to be an efficient and reusable photocatalyst for the decomposition of selected dyes in the aqueous medium.
期刊介绍:
Catalysts (ISSN 2073-4344) is an international open access journal of catalysts and catalyzed reactions. Catalysts publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.