Rafael Ramirez, Andrés Rodríguez, Jonathan Fabregas, Heriberto Maury
{"title":"正齿轮弹流体动力润滑建模与仿真","authors":"Rafael Ramirez, Andrés Rodríguez, Jonathan Fabregas, Heriberto Maury","doi":"10.37934/cfdl.16.6.120130","DOIUrl":null,"url":null,"abstract":"An analysis using computational modeling by finite elements of the phenomenon of elastohydrodynamic lubrication (EHL) was carried out for a transmission system of pinion gear in a crankcase with partial filling lubrication. The analysis utilized tribological studies describing the contact behavior characteristics of solid surfaces with the lubrication film caused by dragging and splashing. Furthermore, the characteristics of the Reynolds-Hertz model for this type of phenomena are described, as well as the equations of elastic deformation and elastic displacements along with the geometry of the non-concordant bodies in contact. This was done by modeling the Lagrangian-Eulerian type for non-Newtonian fluid, implementing multiphysics coupling methods. The pressure profile of the lubricant films, the temperature reached by the lubricant, and the von Mises stress at the contact were obtained, showing a good approximation with the related results, indicating a range of 30 MPa to 900 MPa of pressure in the lubricant film and von Mises stress ranging from 30 MPa to 100 MPa in the contact area of the gear tooth.","PeriodicalId":9736,"journal":{"name":"CFD Letters","volume":"122 18","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling and Simulation of Elastohydrodynamic Lubrication in Spur Gears\",\"authors\":\"Rafael Ramirez, Andrés Rodríguez, Jonathan Fabregas, Heriberto Maury\",\"doi\":\"10.37934/cfdl.16.6.120130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An analysis using computational modeling by finite elements of the phenomenon of elastohydrodynamic lubrication (EHL) was carried out for a transmission system of pinion gear in a crankcase with partial filling lubrication. The analysis utilized tribological studies describing the contact behavior characteristics of solid surfaces with the lubrication film caused by dragging and splashing. Furthermore, the characteristics of the Reynolds-Hertz model for this type of phenomena are described, as well as the equations of elastic deformation and elastic displacements along with the geometry of the non-concordant bodies in contact. This was done by modeling the Lagrangian-Eulerian type for non-Newtonian fluid, implementing multiphysics coupling methods. The pressure profile of the lubricant films, the temperature reached by the lubricant, and the von Mises stress at the contact were obtained, showing a good approximation with the related results, indicating a range of 30 MPa to 900 MPa of pressure in the lubricant film and von Mises stress ranging from 30 MPa to 100 MPa in the contact area of the gear tooth.\",\"PeriodicalId\":9736,\"journal\":{\"name\":\"CFD Letters\",\"volume\":\"122 18\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CFD Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37934/cfdl.16.6.120130\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CFD Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37934/cfdl.16.6.120130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
摘要
利用有限元计算模型对曲轴箱中的小齿轮传动系统的弹性流体动力润滑(EHL)现象进行了分析。分析利用了摩擦学研究,描述了固体表面与由拖曳和飞溅引起的润滑膜的接触行为特征。此外,还描述了此类现象的雷诺-赫兹模型的特征,以及弹性变形和弹性位移方程,以及接触的非和谐体的几何形状。这是通过对非牛顿流体进行拉格朗日-欧勒式建模,并采用多物理场耦合方法实现的。获得了润滑油膜的压力曲线、润滑油达到的温度以及接触处的 von Mises 应力,显示出与相关结果的良好近似性,表明润滑油膜的压力范围为 30 兆帕至 900 兆帕,齿轮齿接触区域的 von Mises 应力范围为 30 兆帕至 100 兆帕。
Modeling and Simulation of Elastohydrodynamic Lubrication in Spur Gears
An analysis using computational modeling by finite elements of the phenomenon of elastohydrodynamic lubrication (EHL) was carried out for a transmission system of pinion gear in a crankcase with partial filling lubrication. The analysis utilized tribological studies describing the contact behavior characteristics of solid surfaces with the lubrication film caused by dragging and splashing. Furthermore, the characteristics of the Reynolds-Hertz model for this type of phenomena are described, as well as the equations of elastic deformation and elastic displacements along with the geometry of the non-concordant bodies in contact. This was done by modeling the Lagrangian-Eulerian type for non-Newtonian fluid, implementing multiphysics coupling methods. The pressure profile of the lubricant films, the temperature reached by the lubricant, and the von Mises stress at the contact were obtained, showing a good approximation with the related results, indicating a range of 30 MPa to 900 MPa of pressure in the lubricant film and von Mises stress ranging from 30 MPa to 100 MPa in the contact area of the gear tooth.