{"title":"在支持 NOMA 的重叠认知无线电网络中进行全双工干扰以提高物理层安全性","authors":"P. P. Hema, A. V. Babu","doi":"10.1002/spy2.371","DOIUrl":null,"url":null,"abstract":"In this paper, we analyze the physical layer security (PLS) performance of nonorthogonal multiple access (NOMA)‐enabled overlay cognitive radio networks (NOMA‐OCRNs) in the presence of an external passive eavesdropper. Here PLS is expressed in terms of the secrecy outage probabilities (SOPs) experienced by the primary user (PU) and secondary user (SU). We obtain approximate expressions for the SOPs of both PU as well as SU assuming a jamming‐free environment, where both primary and secondary destination nodes are half‐duplex devices. To improve the SOP performance, we propose a jamming‐assisted framework, where full‐duplex destination nodes are employed, which are capable of transmitting jamming signals to confound the eavesdropper. Approximate expressions for the SOPs of PU and SU are derived for the jamming‐assisted framework as well. It is demonstrated that the proposed jamming‐assisted framework significantly reduces the SOPs compared to the jamming‐free scenario. We also determine optimal power allocation coefficients (OPACs) for PU and SU at the secondary transmitter that maximizes the total secrecy throughput of the jamming‐assisted NOMA‐OCRN with FD destinations. It is shown that the suggested OPAC significantly enhances the total secrecy throughput, compared to the default selection of the PAC.","PeriodicalId":29939,"journal":{"name":"Security and Privacy","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Full‐duplex jamming for physical layer security improvement in NOMA‐enabled overlay cognitive radio networks\",\"authors\":\"P. P. Hema, A. V. Babu\",\"doi\":\"10.1002/spy2.371\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we analyze the physical layer security (PLS) performance of nonorthogonal multiple access (NOMA)‐enabled overlay cognitive radio networks (NOMA‐OCRNs) in the presence of an external passive eavesdropper. Here PLS is expressed in terms of the secrecy outage probabilities (SOPs) experienced by the primary user (PU) and secondary user (SU). We obtain approximate expressions for the SOPs of both PU as well as SU assuming a jamming‐free environment, where both primary and secondary destination nodes are half‐duplex devices. To improve the SOP performance, we propose a jamming‐assisted framework, where full‐duplex destination nodes are employed, which are capable of transmitting jamming signals to confound the eavesdropper. Approximate expressions for the SOPs of PU and SU are derived for the jamming‐assisted framework as well. It is demonstrated that the proposed jamming‐assisted framework significantly reduces the SOPs compared to the jamming‐free scenario. We also determine optimal power allocation coefficients (OPACs) for PU and SU at the secondary transmitter that maximizes the total secrecy throughput of the jamming‐assisted NOMA‐OCRN with FD destinations. It is shown that the suggested OPAC significantly enhances the total secrecy throughput, compared to the default selection of the PAC.\",\"PeriodicalId\":29939,\"journal\":{\"name\":\"Security and Privacy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Security and Privacy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/spy2.371\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Security and Privacy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/spy2.371","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
摘要
本文分析了在外部无源窃听器存在的情况下,支持非正交多址接入(NOMA)的叠加认知无线电网络(NOMA-OCRNs)的物理层安全(PLS)性能。这里的 PLS 用主用户(PU)和次用户(SU)经历的保密中断概率(SOP)来表示。假定在无干扰环境下,主目的节点和次目的节点都是半双工设备,我们得到了主用户和次用户的 SOP 的近似表达式。为了提高 SOP 性能,我们提出了干扰辅助框架,即采用全双工目的节点,这些节点能够发射干扰信号来迷惑窃听者。我们还为干扰辅助框架推导出了 PU 和 SU 的 SOP 近似表达式。结果表明,与无干扰情况相比,建议的干扰辅助框架大大降低了 SOP。我们还确定了副发射机上 PU 和 SU 的最佳功率分配系数 (OPAC),使带 FD 目的地的干扰辅助 NOMA-OCRN 的总保密吞吐量最大化。结果表明,与默认选择的 PAC 相比,建议的 OPAC 能显著提高总保密吞吐量。
Full‐duplex jamming for physical layer security improvement in NOMA‐enabled overlay cognitive radio networks
In this paper, we analyze the physical layer security (PLS) performance of nonorthogonal multiple access (NOMA)‐enabled overlay cognitive radio networks (NOMA‐OCRNs) in the presence of an external passive eavesdropper. Here PLS is expressed in terms of the secrecy outage probabilities (SOPs) experienced by the primary user (PU) and secondary user (SU). We obtain approximate expressions for the SOPs of both PU as well as SU assuming a jamming‐free environment, where both primary and secondary destination nodes are half‐duplex devices. To improve the SOP performance, we propose a jamming‐assisted framework, where full‐duplex destination nodes are employed, which are capable of transmitting jamming signals to confound the eavesdropper. Approximate expressions for the SOPs of PU and SU are derived for the jamming‐assisted framework as well. It is demonstrated that the proposed jamming‐assisted framework significantly reduces the SOPs compared to the jamming‐free scenario. We also determine optimal power allocation coefficients (OPACs) for PU and SU at the secondary transmitter that maximizes the total secrecy throughput of the jamming‐assisted NOMA‐OCRN with FD destinations. It is shown that the suggested OPAC significantly enhances the total secrecy throughput, compared to the default selection of the PAC.