城市垃圾收集的混合系统和门到门系统在效率和温室气体排放方面的比较:意大利两个山区谷地的案例研究

Alberto Pietro Damiano Baltrocchi, Lucrezia Maggi, M. Carnevale Miino, V. Torretta, Elena Cristina Rada
{"title":"城市垃圾收集的混合系统和门到门系统在效率和温室气体排放方面的比较:意大利两个山区谷地的案例研究","authors":"Alberto Pietro Damiano Baltrocchi, Lucrezia Maggi, M. Carnevale Miino, V. Torretta, Elena Cristina Rada","doi":"10.3390/resources13010017","DOIUrl":null,"url":null,"abstract":"Collecting urban solid waste (USW) is a critical and essential phase for proper waste management and valorization. To date, many data are available for large cities, but few studies have focused on low-density areas, such as mountainous regions. Considering this lack in the literature, this study aimed to compare two separate waste collection systems in two mountainous valleys in terms of effectiveness and GHG emissions. In the first scenario, a mixed collection system (door-to-door + centers) was used, while in the other, waste was separately collected by a full door-to-door system. The results suggested that the full door-to-door system achieved better performance than the mixed collection system (door-to-door + centers), with a fraction of separate waste collection compared to the unit equals (0.84 ± 0.01 vs. 0.79 ± 0.02). Moreover, the full door-to-door system represented the best option for collecting separate waste in mountainous areas in terms of GHG emissions, with 11.21 kgCO2, eq twaste−1 emitted vs. 15.62 kgCO2, eq twaste−1 in the case of the mixed system. Despite utilities emitting a higher amount of GHGs in the door-to-door scenario (4.66 kgCO2, eq inh−1 y−1), they were fully compensated for by the low GHG emissions from citizens in the mixed scenario (1.77 kgCO2, eq inh−1 y−1 vs. 6.65 kgCO2, eq inh−1 y−1). Given the low amount of data on this topic, this work could be considered as a pioneer study of waste management in mountainous areas by comparing the results of two systems regarding effectiveness and GHG emissions. The outcomes of this study could be helpful for waste utilities, institutional agencies, and local communities and also serve as a tool for decision-making in the case of comparing the different options for USW collection systems.","PeriodicalId":509483,"journal":{"name":"Resources","volume":"36 31","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison of Mixed and Door-to-Door Systems for Urban Waste Collection in Terms of Effectiveness and Greenhouse Gas Emissions: A Case Study from Two Mountainous Italian Valleys\",\"authors\":\"Alberto Pietro Damiano Baltrocchi, Lucrezia Maggi, M. Carnevale Miino, V. Torretta, Elena Cristina Rada\",\"doi\":\"10.3390/resources13010017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Collecting urban solid waste (USW) is a critical and essential phase for proper waste management and valorization. To date, many data are available for large cities, but few studies have focused on low-density areas, such as mountainous regions. Considering this lack in the literature, this study aimed to compare two separate waste collection systems in two mountainous valleys in terms of effectiveness and GHG emissions. In the first scenario, a mixed collection system (door-to-door + centers) was used, while in the other, waste was separately collected by a full door-to-door system. The results suggested that the full door-to-door system achieved better performance than the mixed collection system (door-to-door + centers), with a fraction of separate waste collection compared to the unit equals (0.84 ± 0.01 vs. 0.79 ± 0.02). Moreover, the full door-to-door system represented the best option for collecting separate waste in mountainous areas in terms of GHG emissions, with 11.21 kgCO2, eq twaste−1 emitted vs. 15.62 kgCO2, eq twaste−1 in the case of the mixed system. Despite utilities emitting a higher amount of GHGs in the door-to-door scenario (4.66 kgCO2, eq inh−1 y−1), they were fully compensated for by the low GHG emissions from citizens in the mixed scenario (1.77 kgCO2, eq inh−1 y−1 vs. 6.65 kgCO2, eq inh−1 y−1). Given the low amount of data on this topic, this work could be considered as a pioneer study of waste management in mountainous areas by comparing the results of two systems regarding effectiveness and GHG emissions. The outcomes of this study could be helpful for waste utilities, institutional agencies, and local communities and also serve as a tool for decision-making in the case of comparing the different options for USW collection systems.\",\"PeriodicalId\":509483,\"journal\":{\"name\":\"Resources\",\"volume\":\"36 31\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Resources\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/resources13010017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Resources","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/resources13010017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

收集城市固体废物(USW)是妥善管理废物和实现废物价值化的关键和必要阶段。迄今为止,已有许多大城市的数据,但很少有研究关注山区等低密度地区。考虑到文献中的这一不足,本研究旨在从有效性和温室气体排放方面对两个山区谷地的两种独立垃圾收集系统进行比较。在第一种情况下,采用了混合收集系统(门到门 + 中心),而在另一种情况下,则采用完全门到门系统单独收集垃圾。结果表明,与混合收集系统(门到门 + 中心)相比,全门到门系统取得了更好的性能,与单位等量(0.84 ± 0.01 vs. 0.79 ± 0.02)相比,垃圾分类收集的比例更高。此外,就温室气体排放量而言,全上门系统是山区分类垃圾收集的最佳选择,排放量为 11.21 千克二氧化碳当量吨-1,而混合系统为 15.62 千克二氧化碳当量吨-1。尽管在 "门到门 "方案中,公共设施的温室气体排放量较高(4.66 kgCO2,eq inh-1 y-1),但在混合方案中,市民的温室气体排放量较低(1.77 kgCO2,eq inh-1 y-1 vs. 6.65 kgCO2,eq inh-1 y-1),完全弥补了公共设施的温室气体排放量。鉴于有关这一主题的数据较少,这项工作可被视为山区废物管理研究的先驱,通过比较两种制度在有效性和温室气体排放方面的结果。这项研究的结果可能会对废物处理公司、机构组织和当地社区有所帮助,同时也可作为比较不同的城市固体废物收集系统方案的决策工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparison of Mixed and Door-to-Door Systems for Urban Waste Collection in Terms of Effectiveness and Greenhouse Gas Emissions: A Case Study from Two Mountainous Italian Valleys
Collecting urban solid waste (USW) is a critical and essential phase for proper waste management and valorization. To date, many data are available for large cities, but few studies have focused on low-density areas, such as mountainous regions. Considering this lack in the literature, this study aimed to compare two separate waste collection systems in two mountainous valleys in terms of effectiveness and GHG emissions. In the first scenario, a mixed collection system (door-to-door + centers) was used, while in the other, waste was separately collected by a full door-to-door system. The results suggested that the full door-to-door system achieved better performance than the mixed collection system (door-to-door + centers), with a fraction of separate waste collection compared to the unit equals (0.84 ± 0.01 vs. 0.79 ± 0.02). Moreover, the full door-to-door system represented the best option for collecting separate waste in mountainous areas in terms of GHG emissions, with 11.21 kgCO2, eq twaste−1 emitted vs. 15.62 kgCO2, eq twaste−1 in the case of the mixed system. Despite utilities emitting a higher amount of GHGs in the door-to-door scenario (4.66 kgCO2, eq inh−1 y−1), they were fully compensated for by the low GHG emissions from citizens in the mixed scenario (1.77 kgCO2, eq inh−1 y−1 vs. 6.65 kgCO2, eq inh−1 y−1). Given the low amount of data on this topic, this work could be considered as a pioneer study of waste management in mountainous areas by comparing the results of two systems regarding effectiveness and GHG emissions. The outcomes of this study could be helpful for waste utilities, institutional agencies, and local communities and also serve as a tool for decision-making in the case of comparing the different options for USW collection systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evaluating the Effects of Parameter Uncertainty on River Water Quality Predictions Assessment of Environmental Pollution and Risks Associated with Tailing Dams in a Historical Gold Mining Area of Ecuador Characterization of Beech Wood Pellets as Low-Emission Solid Biofuel for Residential Heating in Serbia Spray-Dried Jaboticaba Powder as Food Resource Mechanical Performance of Bentonite Plugs in Abandonment Operations of Petroleum Wells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1