{"title":"用氟化氢铵对钛磁铁矿精矿进行氟化处理","authors":"A. Dyachenko","doi":"10.32362/2410-6593-2023-18-6-572-582","DOIUrl":null,"url":null,"abstract":"Objectives. To study the technological features of a new fluoride technology for the production of titanium dioxide by the decomposition of titanomagnetite concentrate with ammonium fluorides.Methods. The chemical species of the titanium and iron components in the fluorination of titanomagnetite concentrate and sublimation separation of components were determined by means of X-ray powder diffraction analysis and inductively coupled plasma mass spectrometry. The kinetics of sublimation of the titanium component by the thermal decomposition of ammonium hexafluorotitanate was experimentally studied.Results. The products of the fluorination of titanomagnetite concentrate with ammonium bifluoride are compounds (NH4)2TiF6 and (NH4)3FeF6, as proven by chemical analysis and X-ray powder diffraction analysis. The subsequent sublimation separation of the titanium component produced the target product: a mixture of ammonium fluorotitanates. The desublimation of the titanium-containing fraction gave an NH4TiF5–(NH4)2TiF6–(NH4)3TiF7 mixture, the titanium content of which is 30.6% and the content of impurities (Fe, V, Si) is a minimum (0.45%). The activation energy of the heterogeneous reaction and the rate-limiting step of the process were also determined.Conclusions. A high-purity titanium product (a mixture of ammonium fluorotitanates) is obtained. This is a valuable commercial product for the industrial production of titanium dioxide pigment from titanomagnetite concentrate and ilmenite.","PeriodicalId":12215,"journal":{"name":"Fine Chemical Technologies","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fluorination of titanomagnetite concentrate with ammonium bifluoride\",\"authors\":\"A. Dyachenko\",\"doi\":\"10.32362/2410-6593-2023-18-6-572-582\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Objectives. To study the technological features of a new fluoride technology for the production of titanium dioxide by the decomposition of titanomagnetite concentrate with ammonium fluorides.Methods. The chemical species of the titanium and iron components in the fluorination of titanomagnetite concentrate and sublimation separation of components were determined by means of X-ray powder diffraction analysis and inductively coupled plasma mass spectrometry. The kinetics of sublimation of the titanium component by the thermal decomposition of ammonium hexafluorotitanate was experimentally studied.Results. The products of the fluorination of titanomagnetite concentrate with ammonium bifluoride are compounds (NH4)2TiF6 and (NH4)3FeF6, as proven by chemical analysis and X-ray powder diffraction analysis. The subsequent sublimation separation of the titanium component produced the target product: a mixture of ammonium fluorotitanates. The desublimation of the titanium-containing fraction gave an NH4TiF5–(NH4)2TiF6–(NH4)3TiF7 mixture, the titanium content of which is 30.6% and the content of impurities (Fe, V, Si) is a minimum (0.45%). The activation energy of the heterogeneous reaction and the rate-limiting step of the process were also determined.Conclusions. A high-purity titanium product (a mixture of ammonium fluorotitanates) is obtained. This is a valuable commercial product for the industrial production of titanium dioxide pigment from titanomagnetite concentrate and ilmenite.\",\"PeriodicalId\":12215,\"journal\":{\"name\":\"Fine Chemical Technologies\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fine Chemical Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32362/2410-6593-2023-18-6-572-582\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fine Chemical Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32362/2410-6593-2023-18-6-572-582","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
目标。研究通过氟化铵分解钛磁铁矿精矿生产二氧化钛的新型氟化技术的技术特点。通过 X 射线粉末衍射分析和电感耦合等离子体质谱法确定了钛磁铁矿精矿氟化和成分升华分离过程中钛和铁成分的化学种类。实验研究了六氟钛酸铵热分解钛成分升华的动力学。化学分析和 X 射线粉末衍射分析证明,钛磁铁矿精矿与氟化氢铵氟化的产物是 (NH4)2TiF6 和 (NH4)3FeF6 化合物。随后钛成分的升华分离产生了目标产品:氟钛酸铵混合物。含钛部分的升华得到了 NH4TiF5-(NH4)2TiF6-(NH4)3TiF7混合物,其中钛含量为 30.6%,杂质(Fe、V、Si)含量最低(0.45%)。此外,还测定了异相反应的活化能和该过程的限速步骤。获得了一种高纯度钛产品(氟钛酸铵混合物)。这是一种有价值的商业产品,可用于利用钛磁铁矿精矿和钛铁矿生产二氧化钛颜料。
Fluorination of titanomagnetite concentrate with ammonium bifluoride
Objectives. To study the technological features of a new fluoride technology for the production of titanium dioxide by the decomposition of titanomagnetite concentrate with ammonium fluorides.Methods. The chemical species of the titanium and iron components in the fluorination of titanomagnetite concentrate and sublimation separation of components were determined by means of X-ray powder diffraction analysis and inductively coupled plasma mass spectrometry. The kinetics of sublimation of the titanium component by the thermal decomposition of ammonium hexafluorotitanate was experimentally studied.Results. The products of the fluorination of titanomagnetite concentrate with ammonium bifluoride are compounds (NH4)2TiF6 and (NH4)3FeF6, as proven by chemical analysis and X-ray powder diffraction analysis. The subsequent sublimation separation of the titanium component produced the target product: a mixture of ammonium fluorotitanates. The desublimation of the titanium-containing fraction gave an NH4TiF5–(NH4)2TiF6–(NH4)3TiF7 mixture, the titanium content of which is 30.6% and the content of impurities (Fe, V, Si) is a minimum (0.45%). The activation energy of the heterogeneous reaction and the rate-limiting step of the process were also determined.Conclusions. A high-purity titanium product (a mixture of ammonium fluorotitanates) is obtained. This is a valuable commercial product for the industrial production of titanium dioxide pigment from titanomagnetite concentrate and ilmenite.