具有分段结构的还原石墨烯氧化物填充聚合物复合材料的详细形态和电子传输

Vitalii A. Kuznetsov, M. Gudkov, Vladimir A. Ermakov, K. Shiyanova, Lidiya V. Shestopalova, Andrey A. Fedorov, Evgeny Yu. Gerasimov, Evgenii A. Suprun
{"title":"具有分段结构的还原石墨烯氧化物填充聚合物复合材料的详细形态和电子传输","authors":"Vitalii A. Kuznetsov, M. Gudkov, Vladimir A. Ermakov, K. Shiyanova, Lidiya V. Shestopalova, Andrey A. Fedorov, Evgeny Yu. Gerasimov, Evgenii A. Suprun","doi":"10.1002/pssa.202300855","DOIUrl":null,"url":null,"abstract":"Polymer composites of a segregated network structure are dielectric polymer granules coated with electrically conductive nanoparticles at a low content, the quantity of the junctions between the granules determines the composites' mechanical properties, and the percolation network formed by the nanoparticles determines the electrical conductivity. Here, the morphology and electron‐transport properties in reduced graphene oxide (rGO)‐filled composites with a segregated structure based on polyvinyl chloride (PVC), poly(vinylidene fluoride‐co‐tetrafluoroethylene) (P(VDF‐TFE)), and ultrahigh‐molecular‐weight polyethylene (UHMWPE) are studied. Optical and electron microscopies study of the microtome‐formed cross sections have shown the morphology to be dependent on the polymer—the thinnest rGO layers are in UHMWPE‐based composites, the thicker rGO layers are in PVC‐ and P(VDF‐TFE)‐based ones. The electrical conduction of the composites and the rGO‐paper occurs through the same hopping conduction mechanisms within the wide temperature range, which allows to use the composites in applications where pure rGO is considered. Owing to thicker rGO layers open to the environment, PVC‐ and P(VDF‐TFE)‐based composites are more attractive, rather than the UHMWPE ones, in applications where layered materials are needed, for example, in lithium‐ion batteries or supercapacitors. The UHMWPE‐based composites look more promising as electrically conductive materials when mechanical strength is important.","PeriodicalId":506741,"journal":{"name":"physica status solidi (a)","volume":"123 46","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detailed Morphology and Electron Transport in Reduced Graphene Oxide Filled Polymer Composites with a Segregated Structure\",\"authors\":\"Vitalii A. Kuznetsov, M. Gudkov, Vladimir A. Ermakov, K. Shiyanova, Lidiya V. Shestopalova, Andrey A. Fedorov, Evgeny Yu. Gerasimov, Evgenii A. Suprun\",\"doi\":\"10.1002/pssa.202300855\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Polymer composites of a segregated network structure are dielectric polymer granules coated with electrically conductive nanoparticles at a low content, the quantity of the junctions between the granules determines the composites' mechanical properties, and the percolation network formed by the nanoparticles determines the electrical conductivity. Here, the morphology and electron‐transport properties in reduced graphene oxide (rGO)‐filled composites with a segregated structure based on polyvinyl chloride (PVC), poly(vinylidene fluoride‐co‐tetrafluoroethylene) (P(VDF‐TFE)), and ultrahigh‐molecular‐weight polyethylene (UHMWPE) are studied. Optical and electron microscopies study of the microtome‐formed cross sections have shown the morphology to be dependent on the polymer—the thinnest rGO layers are in UHMWPE‐based composites, the thicker rGO layers are in PVC‐ and P(VDF‐TFE)‐based ones. The electrical conduction of the composites and the rGO‐paper occurs through the same hopping conduction mechanisms within the wide temperature range, which allows to use the composites in applications where pure rGO is considered. Owing to thicker rGO layers open to the environment, PVC‐ and P(VDF‐TFE)‐based composites are more attractive, rather than the UHMWPE ones, in applications where layered materials are needed, for example, in lithium‐ion batteries or supercapacitors. The UHMWPE‐based composites look more promising as electrically conductive materials when mechanical strength is important.\",\"PeriodicalId\":506741,\"journal\":{\"name\":\"physica status solidi (a)\",\"volume\":\"123 46\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"physica status solidi (a)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/pssa.202300855\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"physica status solidi (a)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/pssa.202300855","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

具有离析网络结构的聚合物复合材料是在低含量的导电纳米颗粒上包覆电介质聚合物颗粒,颗粒之间的连接数量决定了复合材料的机械性能,而纳米颗粒形成的渗流网络则决定了复合材料的导电性能。本文研究了以聚氯乙烯(PVC)、聚偏二氟乙烯-共四氟乙烯(P(VDF-TFE))和超高分子量聚乙烯(UHMWPE)为基础的具有离析结构的还原氧化石墨烯(rGO)填充复合材料的形态和电子传输特性。对微瘤形成的横截面进行的光学和电子显微镜研究表明,其形态取决于聚合物--超高分子量聚乙烯基复合材料中的 rGO 层最薄,而 PVC 和 P(VDF-TFE) 基复合材料中的 rGO 层较厚。在较宽的温度范围内,复合材料和 rGO 纸的电传导是通过相同的跳变传导机制实现的,这使得复合材料可以应用于考虑使用纯 rGO 的场合。由于向环境开放的 rGO 层较厚,在需要分层材料的应用中,例如在锂离子电池或超级电容器中,基于 PVC 和 P(VDF-TFE)的复合材料比基于 UHMWPE 的复合材料更具吸引力。当机械强度非常重要时,基于超高分子量聚乙烯的复合材料作为导电材料更有前途。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Detailed Morphology and Electron Transport in Reduced Graphene Oxide Filled Polymer Composites with a Segregated Structure
Polymer composites of a segregated network structure are dielectric polymer granules coated with electrically conductive nanoparticles at a low content, the quantity of the junctions between the granules determines the composites' mechanical properties, and the percolation network formed by the nanoparticles determines the electrical conductivity. Here, the morphology and electron‐transport properties in reduced graphene oxide (rGO)‐filled composites with a segregated structure based on polyvinyl chloride (PVC), poly(vinylidene fluoride‐co‐tetrafluoroethylene) (P(VDF‐TFE)), and ultrahigh‐molecular‐weight polyethylene (UHMWPE) are studied. Optical and electron microscopies study of the microtome‐formed cross sections have shown the morphology to be dependent on the polymer—the thinnest rGO layers are in UHMWPE‐based composites, the thicker rGO layers are in PVC‐ and P(VDF‐TFE)‐based ones. The electrical conduction of the composites and the rGO‐paper occurs through the same hopping conduction mechanisms within the wide temperature range, which allows to use the composites in applications where pure rGO is considered. Owing to thicker rGO layers open to the environment, PVC‐ and P(VDF‐TFE)‐based composites are more attractive, rather than the UHMWPE ones, in applications where layered materials are needed, for example, in lithium‐ion batteries or supercapacitors. The UHMWPE‐based composites look more promising as electrically conductive materials when mechanical strength is important.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Photocatalytic Performance of ZnO@ZnS Core–Shell Heterostructures for Malachite Green and Rhodamine B Dye Degradation Oxygen‐Rich Porous Organic Polymer for Thermal Energy Storage Positively Charged Defects in Ta2O5 and Nb2O5: Are They Correlated with Sodium Ions? Metolachlor Detection in Grain Using N‐Doped Carbon Quantum Dots and the Intramolecular Charge Transfer Effect Multilayer Diamond‐Like Carbon Films on Monocrystalline Diamond
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1